Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* ethtool support for e1000 */
  23
  24#include <linux/netdevice.h>
  25#include <linux/interrupt.h>
  26#include <linux/ethtool.h>
  27#include <linux/pci.h>
  28#include <linux/slab.h>
  29#include <linux/delay.h>
  30#include <linux/vmalloc.h>
  31#include <linux/pm_runtime.h>
  32
  33#include "e1000.h"
  34
  35enum { NETDEV_STATS, E1000_STATS };
  36
  37struct e1000_stats {
  38	char stat_string[ETH_GSTRING_LEN];
  39	int type;
  40	int sizeof_stat;
  41	int stat_offset;
  42};
  43
  44#define E1000_STAT(str, m) { \
  45		.stat_string = str, \
  46		.type = E1000_STATS, \
  47		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  48		.stat_offset = offsetof(struct e1000_adapter, m) }
  49#define E1000_NETDEV_STAT(str, m) { \
  50		.stat_string = str, \
  51		.type = NETDEV_STATS, \
  52		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  53		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  54
  55static const struct e1000_stats e1000_gstrings_stats[] = {
  56	E1000_STAT("rx_packets", stats.gprc),
  57	E1000_STAT("tx_packets", stats.gptc),
  58	E1000_STAT("rx_bytes", stats.gorc),
  59	E1000_STAT("tx_bytes", stats.gotc),
  60	E1000_STAT("rx_broadcast", stats.bprc),
  61	E1000_STAT("tx_broadcast", stats.bptc),
  62	E1000_STAT("rx_multicast", stats.mprc),
  63	E1000_STAT("tx_multicast", stats.mptc),
  64	E1000_NETDEV_STAT("rx_errors", rx_errors),
  65	E1000_NETDEV_STAT("tx_errors", tx_errors),
  66	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  67	E1000_STAT("multicast", stats.mprc),
  68	E1000_STAT("collisions", stats.colc),
  69	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  70	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  71	E1000_STAT("rx_crc_errors", stats.crcerrs),
  72	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  73	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  74	E1000_STAT("rx_missed_errors", stats.mpc),
  75	E1000_STAT("tx_aborted_errors", stats.ecol),
  76	E1000_STAT("tx_carrier_errors", stats.tncrs),
  77	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  78	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  79	E1000_STAT("tx_window_errors", stats.latecol),
  80	E1000_STAT("tx_abort_late_coll", stats.latecol),
  81	E1000_STAT("tx_deferred_ok", stats.dc),
  82	E1000_STAT("tx_single_coll_ok", stats.scc),
  83	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  84	E1000_STAT("tx_timeout_count", tx_timeout_count),
  85	E1000_STAT("tx_restart_queue", restart_queue),
  86	E1000_STAT("rx_long_length_errors", stats.roc),
  87	E1000_STAT("rx_short_length_errors", stats.ruc),
  88	E1000_STAT("rx_align_errors", stats.algnerrc),
  89	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  90	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  91	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  92	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  93	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  94	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  95	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  96	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  97	E1000_STAT("rx_header_split", rx_hdr_split),
  98	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  99	E1000_STAT("tx_smbus", stats.mgptc),
 100	E1000_STAT("rx_smbus", stats.mgprc),
 101	E1000_STAT("dropped_smbus", stats.mgpdc),
 102	E1000_STAT("rx_dma_failed", rx_dma_failed),
 103	E1000_STAT("tx_dma_failed", tx_dma_failed),
 104	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
 105	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
 106	E1000_STAT("corr_ecc_errors", corr_errors),
 107	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
 108};
 109
 110#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 111#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 112static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 113	"Register test  (offline)", "Eeprom test    (offline)",
 114	"Interrupt test (offline)", "Loopback test  (offline)",
 115	"Link test   (on/offline)"
 116};
 117
 118#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 119
 120static int e1000_get_settings(struct net_device *netdev,
 121			      struct ethtool_cmd *ecmd)
 122{
 123	struct e1000_adapter *adapter = netdev_priv(netdev);
 124	struct e1000_hw *hw = &adapter->hw;
 125	u32 speed;
 126
 127	if (hw->phy.media_type == e1000_media_type_copper) {
 128		ecmd->supported = (SUPPORTED_10baseT_Half |
 129				   SUPPORTED_10baseT_Full |
 130				   SUPPORTED_100baseT_Half |
 131				   SUPPORTED_100baseT_Full |
 132				   SUPPORTED_1000baseT_Full |
 133				   SUPPORTED_Autoneg |
 134				   SUPPORTED_TP);
 135		if (hw->phy.type == e1000_phy_ife)
 136			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
 137		ecmd->advertising = ADVERTISED_TP;
 138
 139		if (hw->mac.autoneg == 1) {
 140			ecmd->advertising |= ADVERTISED_Autoneg;
 141			/* the e1000 autoneg seems to match ethtool nicely */
 142			ecmd->advertising |= hw->phy.autoneg_advertised;
 143		}
 144
 145		ecmd->port = PORT_TP;
 146		ecmd->phy_address = hw->phy.addr;
 147		ecmd->transceiver = XCVR_INTERNAL;
 148
 149	} else {
 150		ecmd->supported   = (SUPPORTED_1000baseT_Full |
 151				     SUPPORTED_FIBRE |
 152				     SUPPORTED_Autoneg);
 153
 154		ecmd->advertising = (ADVERTISED_1000baseT_Full |
 155				     ADVERTISED_FIBRE |
 156				     ADVERTISED_Autoneg);
 157
 158		ecmd->port = PORT_FIBRE;
 159		ecmd->transceiver = XCVR_EXTERNAL;
 160	}
 161
 162	speed = -1;
 163	ecmd->duplex = -1;
 164
 165	if (netif_running(netdev)) {
 166		if (netif_carrier_ok(netdev)) {
 167			speed = adapter->link_speed;
 168			ecmd->duplex = adapter->link_duplex - 1;
 169		}
 170	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
 171		u32 status = er32(STATUS);
 172		if (status & E1000_STATUS_LU) {
 173			if (status & E1000_STATUS_SPEED_1000)
 174				speed = SPEED_1000;
 175			else if (status & E1000_STATUS_SPEED_100)
 176				speed = SPEED_100;
 177			else
 178				speed = SPEED_10;
 179
 180			if (status & E1000_STATUS_FD)
 181				ecmd->duplex = DUPLEX_FULL;
 182			else
 183				ecmd->duplex = DUPLEX_HALF;
 184		}
 185	}
 186
 187	ethtool_cmd_speed_set(ecmd, speed);
 188	ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 189			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 190
 191	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 192	if ((hw->phy.media_type == e1000_media_type_copper) &&
 193	    netif_carrier_ok(netdev))
 194		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
 195	else
 196		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 197
 198	if (hw->phy.mdix == AUTO_ALL_MODES)
 199		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 200	else
 201		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
 202
 203	return 0;
 204}
 205
 206static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 207{
 208	struct e1000_mac_info *mac = &adapter->hw.mac;
 209
 210	mac->autoneg = 0;
 211
 212	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 213	 * for the switch() below to work
 214	 */
 215	if ((spd & 1) || (dplx & ~1))
 216		goto err_inval;
 217
 218	/* Fiber NICs only allow 1000 gbps Full duplex */
 219	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 220	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 221		goto err_inval;
 222	}
 223
 224	switch (spd + dplx) {
 225	case SPEED_10 + DUPLEX_HALF:
 226		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 227		break;
 228	case SPEED_10 + DUPLEX_FULL:
 229		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 230		break;
 231	case SPEED_100 + DUPLEX_HALF:
 232		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 233		break;
 234	case SPEED_100 + DUPLEX_FULL:
 235		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 236		break;
 237	case SPEED_1000 + DUPLEX_FULL:
 238		mac->autoneg = 1;
 239		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 240		break;
 241	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 242	default:
 243		goto err_inval;
 244	}
 245
 246	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 247	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 248
 249	return 0;
 250
 251err_inval:
 252	e_err("Unsupported Speed/Duplex configuration\n");
 253	return -EINVAL;
 254}
 255
 256static int e1000_set_settings(struct net_device *netdev,
 257			      struct ethtool_cmd *ecmd)
 258{
 259	struct e1000_adapter *adapter = netdev_priv(netdev);
 260	struct e1000_hw *hw = &adapter->hw;
 261	int ret_val = 0;
 262
 263	pm_runtime_get_sync(netdev->dev.parent);
 264
 265	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 266	 * cannot be changed
 267	 */
 268	if (hw->phy.ops.check_reset_block &&
 269	    hw->phy.ops.check_reset_block(hw)) {
 270		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 271		ret_val = -EINVAL;
 272		goto out;
 273	}
 274
 275	/* MDI setting is only allowed when autoneg enabled because
 276	 * some hardware doesn't allow MDI setting when speed or
 277	 * duplex is forced.
 278	 */
 279	if (ecmd->eth_tp_mdix_ctrl) {
 280		if (hw->phy.media_type != e1000_media_type_copper) {
 281			ret_val = -EOPNOTSUPP;
 282			goto out;
 283		}
 284
 285		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 286		    (ecmd->autoneg != AUTONEG_ENABLE)) {
 287			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 288			ret_val = -EINVAL;
 289			goto out;
 290		}
 291	}
 292
 293	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 294		usleep_range(1000, 2000);
 295
 296	if (ecmd->autoneg == AUTONEG_ENABLE) {
 297		hw->mac.autoneg = 1;
 298		if (hw->phy.media_type == e1000_media_type_fiber)
 299			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 300			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 301		else
 302			hw->phy.autoneg_advertised = ecmd->advertising |
 303			    ADVERTISED_TP | ADVERTISED_Autoneg;
 304		ecmd->advertising = hw->phy.autoneg_advertised;
 305		if (adapter->fc_autoneg)
 306			hw->fc.requested_mode = e1000_fc_default;
 307	} else {
 308		u32 speed = ethtool_cmd_speed(ecmd);
 309		/* calling this overrides forced MDI setting */
 310		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 311			ret_val = -EINVAL;
 312			goto out;
 313		}
 314	}
 315
 316	/* MDI-X => 2; MDI => 1; Auto => 3 */
 317	if (ecmd->eth_tp_mdix_ctrl) {
 318		/* fix up the value for auto (3 => 0) as zero is mapped
 319		 * internally to auto
 320		 */
 321		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 322			hw->phy.mdix = AUTO_ALL_MODES;
 323		else
 324			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
 325	}
 326
 327	/* reset the link */
 328	if (netif_running(adapter->netdev)) {
 329		e1000e_down(adapter, true);
 330		e1000e_up(adapter);
 331	} else {
 332		e1000e_reset(adapter);
 333	}
 334
 335out:
 336	pm_runtime_put_sync(netdev->dev.parent);
 337	clear_bit(__E1000_RESETTING, &adapter->state);
 338	return ret_val;
 339}
 340
 341static void e1000_get_pauseparam(struct net_device *netdev,
 342				 struct ethtool_pauseparam *pause)
 343{
 344	struct e1000_adapter *adapter = netdev_priv(netdev);
 345	struct e1000_hw *hw = &adapter->hw;
 346
 347	pause->autoneg =
 348	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 349
 350	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 351		pause->rx_pause = 1;
 352	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 353		pause->tx_pause = 1;
 354	} else if (hw->fc.current_mode == e1000_fc_full) {
 355		pause->rx_pause = 1;
 356		pause->tx_pause = 1;
 357	}
 358}
 359
 360static int e1000_set_pauseparam(struct net_device *netdev,
 361				struct ethtool_pauseparam *pause)
 362{
 363	struct e1000_adapter *adapter = netdev_priv(netdev);
 364	struct e1000_hw *hw = &adapter->hw;
 365	int retval = 0;
 366
 367	adapter->fc_autoneg = pause->autoneg;
 368
 369	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 370		usleep_range(1000, 2000);
 371
 372	pm_runtime_get_sync(netdev->dev.parent);
 373
 374	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 375		hw->fc.requested_mode = e1000_fc_default;
 376		if (netif_running(adapter->netdev)) {
 377			e1000e_down(adapter, true);
 378			e1000e_up(adapter);
 379		} else {
 380			e1000e_reset(adapter);
 381		}
 382	} else {
 383		if (pause->rx_pause && pause->tx_pause)
 384			hw->fc.requested_mode = e1000_fc_full;
 385		else if (pause->rx_pause && !pause->tx_pause)
 386			hw->fc.requested_mode = e1000_fc_rx_pause;
 387		else if (!pause->rx_pause && pause->tx_pause)
 388			hw->fc.requested_mode = e1000_fc_tx_pause;
 389		else if (!pause->rx_pause && !pause->tx_pause)
 390			hw->fc.requested_mode = e1000_fc_none;
 391
 392		hw->fc.current_mode = hw->fc.requested_mode;
 393
 394		if (hw->phy.media_type == e1000_media_type_fiber) {
 395			retval = hw->mac.ops.setup_link(hw);
 396			/* implicit goto out */
 397		} else {
 398			retval = e1000e_force_mac_fc(hw);
 399			if (retval)
 400				goto out;
 401			e1000e_set_fc_watermarks(hw);
 402		}
 403	}
 404
 405out:
 406	pm_runtime_put_sync(netdev->dev.parent);
 407	clear_bit(__E1000_RESETTING, &adapter->state);
 408	return retval;
 409}
 410
 411static u32 e1000_get_msglevel(struct net_device *netdev)
 412{
 413	struct e1000_adapter *adapter = netdev_priv(netdev);
 414	return adapter->msg_enable;
 415}
 416
 417static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 418{
 419	struct e1000_adapter *adapter = netdev_priv(netdev);
 420	adapter->msg_enable = data;
 421}
 422
 423static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 424{
 425#define E1000_REGS_LEN 32	/* overestimate */
 426	return E1000_REGS_LEN * sizeof(u32);
 427}
 428
 429static void e1000_get_regs(struct net_device *netdev,
 430			   struct ethtool_regs *regs, void *p)
 431{
 432	struct e1000_adapter *adapter = netdev_priv(netdev);
 433	struct e1000_hw *hw = &adapter->hw;
 434	u32 *regs_buff = p;
 435	u16 phy_data;
 436
 437	pm_runtime_get_sync(netdev->dev.parent);
 438
 439	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 440
 441	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
 442	    adapter->pdev->device;
 443
 444	regs_buff[0] = er32(CTRL);
 445	regs_buff[1] = er32(STATUS);
 446
 447	regs_buff[2] = er32(RCTL);
 448	regs_buff[3] = er32(RDLEN(0));
 449	regs_buff[4] = er32(RDH(0));
 450	regs_buff[5] = er32(RDT(0));
 451	regs_buff[6] = er32(RDTR);
 452
 453	regs_buff[7] = er32(TCTL);
 454	regs_buff[8] = er32(TDLEN(0));
 455	regs_buff[9] = er32(TDH(0));
 456	regs_buff[10] = er32(TDT(0));
 457	regs_buff[11] = er32(TIDV);
 458
 459	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 460
 461	/* ethtool doesn't use anything past this point, so all this
 462	 * code is likely legacy junk for apps that may or may not exist
 463	 */
 464	if (hw->phy.type == e1000_phy_m88) {
 465		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 466		regs_buff[13] = (u32)phy_data; /* cable length */
 467		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 468		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 469		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 470		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 471		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 472		regs_buff[18] = regs_buff[13]; /* cable polarity */
 473		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 474		regs_buff[20] = regs_buff[17]; /* polarity correction */
 475		/* phy receive errors */
 476		regs_buff[22] = adapter->phy_stats.receive_errors;
 477		regs_buff[23] = regs_buff[13]; /* mdix mode */
 478	}
 479	regs_buff[21] = 0;	/* was idle_errors */
 480	e1e_rphy(hw, MII_STAT1000, &phy_data);
 481	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 482	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 483
 484	pm_runtime_put_sync(netdev->dev.parent);
 485}
 486
 487static int e1000_get_eeprom_len(struct net_device *netdev)
 488{
 489	struct e1000_adapter *adapter = netdev_priv(netdev);
 490	return adapter->hw.nvm.word_size * 2;
 491}
 492
 493static int e1000_get_eeprom(struct net_device *netdev,
 494			    struct ethtool_eeprom *eeprom, u8 *bytes)
 495{
 496	struct e1000_adapter *adapter = netdev_priv(netdev);
 497	struct e1000_hw *hw = &adapter->hw;
 498	u16 *eeprom_buff;
 499	int first_word;
 500	int last_word;
 501	int ret_val = 0;
 502	u16 i;
 503
 504	if (eeprom->len == 0)
 505		return -EINVAL;
 506
 507	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 508
 509	first_word = eeprom->offset >> 1;
 510	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 511
 512	eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
 513			      GFP_KERNEL);
 514	if (!eeprom_buff)
 515		return -ENOMEM;
 516
 517	pm_runtime_get_sync(netdev->dev.parent);
 518
 519	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 520		ret_val = e1000_read_nvm(hw, first_word,
 521					 last_word - first_word + 1,
 522					 eeprom_buff);
 523	} else {
 524		for (i = 0; i < last_word - first_word + 1; i++) {
 525			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 526						 &eeprom_buff[i]);
 527			if (ret_val)
 528				break;
 529		}
 530	}
 531
 532	pm_runtime_put_sync(netdev->dev.parent);
 533
 534	if (ret_val) {
 535		/* a read error occurred, throw away the result */
 536		memset(eeprom_buff, 0xff, sizeof(u16) *
 537		       (last_word - first_word + 1));
 538	} else {
 539		/* Device's eeprom is always little-endian, word addressable */
 540		for (i = 0; i < last_word - first_word + 1; i++)
 541			le16_to_cpus(&eeprom_buff[i]);
 542	}
 543
 544	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 545	kfree(eeprom_buff);
 546
 547	return ret_val;
 548}
 549
 550static int e1000_set_eeprom(struct net_device *netdev,
 551			    struct ethtool_eeprom *eeprom, u8 *bytes)
 552{
 553	struct e1000_adapter *adapter = netdev_priv(netdev);
 554	struct e1000_hw *hw = &adapter->hw;
 555	u16 *eeprom_buff;
 556	void *ptr;
 557	int max_len;
 558	int first_word;
 559	int last_word;
 560	int ret_val = 0;
 561	u16 i;
 562
 563	if (eeprom->len == 0)
 564		return -EOPNOTSUPP;
 565
 566	if (eeprom->magic !=
 567	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 568		return -EFAULT;
 569
 570	if (adapter->flags & FLAG_READ_ONLY_NVM)
 571		return -EINVAL;
 572
 573	max_len = hw->nvm.word_size * 2;
 574
 575	first_word = eeprom->offset >> 1;
 576	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 577	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 578	if (!eeprom_buff)
 579		return -ENOMEM;
 580
 581	ptr = (void *)eeprom_buff;
 582
 583	pm_runtime_get_sync(netdev->dev.parent);
 584
 585	if (eeprom->offset & 1) {
 586		/* need read/modify/write of first changed EEPROM word */
 587		/* only the second byte of the word is being modified */
 588		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 589		ptr++;
 590	}
 591	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 592		/* need read/modify/write of last changed EEPROM word */
 593		/* only the first byte of the word is being modified */
 594		ret_val = e1000_read_nvm(hw, last_word, 1,
 595					 &eeprom_buff[last_word - first_word]);
 596
 597	if (ret_val)
 598		goto out;
 599
 600	/* Device's eeprom is always little-endian, word addressable */
 601	for (i = 0; i < last_word - first_word + 1; i++)
 602		le16_to_cpus(&eeprom_buff[i]);
 603
 604	memcpy(ptr, bytes, eeprom->len);
 605
 606	for (i = 0; i < last_word - first_word + 1; i++)
 607		cpu_to_le16s(&eeprom_buff[i]);
 608
 609	ret_val = e1000_write_nvm(hw, first_word,
 610				  last_word - first_word + 1, eeprom_buff);
 611
 612	if (ret_val)
 613		goto out;
 614
 615	/* Update the checksum over the first part of the EEPROM if needed
 616	 * and flush shadow RAM for applicable controllers
 617	 */
 618	if ((first_word <= NVM_CHECKSUM_REG) ||
 619	    (hw->mac.type == e1000_82583) ||
 620	    (hw->mac.type == e1000_82574) ||
 621	    (hw->mac.type == e1000_82573))
 622		ret_val = e1000e_update_nvm_checksum(hw);
 623
 624out:
 625	pm_runtime_put_sync(netdev->dev.parent);
 626	kfree(eeprom_buff);
 627	return ret_val;
 628}
 629
 630static void e1000_get_drvinfo(struct net_device *netdev,
 631			      struct ethtool_drvinfo *drvinfo)
 632{
 633	struct e1000_adapter *adapter = netdev_priv(netdev);
 634
 635	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 636	strlcpy(drvinfo->version, e1000e_driver_version,
 637		sizeof(drvinfo->version));
 638
 639	/* EEPROM image version # is reported as firmware version # for
 640	 * PCI-E controllers
 641	 */
 642	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 643		 "%d.%d-%d",
 644		 (adapter->eeprom_vers & 0xF000) >> 12,
 645		 (adapter->eeprom_vers & 0x0FF0) >> 4,
 646		 (adapter->eeprom_vers & 0x000F));
 647
 648	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 649		sizeof(drvinfo->bus_info));
 650	drvinfo->regdump_len = e1000_get_regs_len(netdev);
 651	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
 652}
 653
 654static void e1000_get_ringparam(struct net_device *netdev,
 655				struct ethtool_ringparam *ring)
 656{
 657	struct e1000_adapter *adapter = netdev_priv(netdev);
 658
 659	ring->rx_max_pending = E1000_MAX_RXD;
 660	ring->tx_max_pending = E1000_MAX_TXD;
 661	ring->rx_pending = adapter->rx_ring_count;
 662	ring->tx_pending = adapter->tx_ring_count;
 663}
 664
 665static int e1000_set_ringparam(struct net_device *netdev,
 666			       struct ethtool_ringparam *ring)
 667{
 668	struct e1000_adapter *adapter = netdev_priv(netdev);
 669	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 670	int err = 0, size = sizeof(struct e1000_ring);
 671	bool set_tx = false, set_rx = false;
 672	u16 new_rx_count, new_tx_count;
 673
 674	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 675		return -EINVAL;
 676
 677	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 678			       E1000_MAX_RXD);
 679	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 680
 681	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 682			       E1000_MAX_TXD);
 683	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 684
 685	if ((new_tx_count == adapter->tx_ring_count) &&
 686	    (new_rx_count == adapter->rx_ring_count))
 687		/* nothing to do */
 688		return 0;
 689
 690	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 691		usleep_range(1000, 2000);
 692
 693	if (!netif_running(adapter->netdev)) {
 694		/* Set counts now and allocate resources during open() */
 695		adapter->tx_ring->count = new_tx_count;
 696		adapter->rx_ring->count = new_rx_count;
 697		adapter->tx_ring_count = new_tx_count;
 698		adapter->rx_ring_count = new_rx_count;
 699		goto clear_reset;
 700	}
 701
 702	set_tx = (new_tx_count != adapter->tx_ring_count);
 703	set_rx = (new_rx_count != adapter->rx_ring_count);
 704
 705	/* Allocate temporary storage for ring updates */
 706	if (set_tx) {
 707		temp_tx = vmalloc(size);
 708		if (!temp_tx) {
 709			err = -ENOMEM;
 710			goto free_temp;
 711		}
 712	}
 713	if (set_rx) {
 714		temp_rx = vmalloc(size);
 715		if (!temp_rx) {
 716			err = -ENOMEM;
 717			goto free_temp;
 718		}
 719	}
 720
 721	pm_runtime_get_sync(netdev->dev.parent);
 722
 723	e1000e_down(adapter, true);
 724
 725	/* We can't just free everything and then setup again, because the
 726	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 727	 * structs.  First, attempt to allocate new resources...
 728	 */
 729	if (set_tx) {
 730		memcpy(temp_tx, adapter->tx_ring, size);
 731		temp_tx->count = new_tx_count;
 732		err = e1000e_setup_tx_resources(temp_tx);
 733		if (err)
 734			goto err_setup;
 735	}
 736	if (set_rx) {
 737		memcpy(temp_rx, adapter->rx_ring, size);
 738		temp_rx->count = new_rx_count;
 739		err = e1000e_setup_rx_resources(temp_rx);
 740		if (err)
 741			goto err_setup_rx;
 742	}
 743
 744	/* ...then free the old resources and copy back any new ring data */
 745	if (set_tx) {
 746		e1000e_free_tx_resources(adapter->tx_ring);
 747		memcpy(adapter->tx_ring, temp_tx, size);
 748		adapter->tx_ring_count = new_tx_count;
 749	}
 750	if (set_rx) {
 751		e1000e_free_rx_resources(adapter->rx_ring);
 752		memcpy(adapter->rx_ring, temp_rx, size);
 753		adapter->rx_ring_count = new_rx_count;
 754	}
 755
 756err_setup_rx:
 757	if (err && set_tx)
 758		e1000e_free_tx_resources(temp_tx);
 759err_setup:
 760	e1000e_up(adapter);
 761	pm_runtime_put_sync(netdev->dev.parent);
 762free_temp:
 763	vfree(temp_tx);
 764	vfree(temp_rx);
 765clear_reset:
 766	clear_bit(__E1000_RESETTING, &adapter->state);
 767	return err;
 768}
 769
 770static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 771			     int reg, int offset, u32 mask, u32 write)
 772{
 773	u32 pat, val;
 774	static const u32 test[] = {
 775		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 776	};
 777	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 778		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 779				      (test[pat] & write));
 780		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 781		if (val != (test[pat] & write & mask)) {
 782			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 783			      reg + (offset << 2), val,
 784			      (test[pat] & write & mask));
 785			*data = reg;
 786			return 1;
 787		}
 788	}
 789	return 0;
 790}
 791
 792static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 793			      int reg, u32 mask, u32 write)
 794{
 795	u32 val;
 796	__ew32(&adapter->hw, reg, write & mask);
 797	val = __er32(&adapter->hw, reg);
 798	if ((write & mask) != (val & mask)) {
 799		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 800		      reg, (val & mask), (write & mask));
 801		*data = reg;
 802		return 1;
 803	}
 804	return 0;
 805}
 806
 807#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 808	do {                                                                   \
 809		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 810			return 1;                                              \
 811	} while (0)
 812#define REG_PATTERN_TEST(reg, mask, write)                                     \
 813	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 814
 815#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 816	do {                                                                   \
 817		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 818			return 1;                                              \
 819	} while (0)
 820
 821static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 822{
 823	struct e1000_hw *hw = &adapter->hw;
 824	struct e1000_mac_info *mac = &adapter->hw.mac;
 825	u32 value;
 826	u32 before;
 827	u32 after;
 828	u32 i;
 829	u32 toggle;
 830	u32 mask;
 831	u32 wlock_mac = 0;
 832
 833	/* The status register is Read Only, so a write should fail.
 834	 * Some bits that get toggled are ignored.  There are several bits
 835	 * on newer hardware that are r/w.
 836	 */
 837	switch (mac->type) {
 838	case e1000_82571:
 839	case e1000_82572:
 840	case e1000_80003es2lan:
 841		toggle = 0x7FFFF3FF;
 842		break;
 843	default:
 844		toggle = 0x7FFFF033;
 845		break;
 846	}
 847
 848	before = er32(STATUS);
 849	value = (er32(STATUS) & toggle);
 850	ew32(STATUS, toggle);
 851	after = er32(STATUS) & toggle;
 852	if (value != after) {
 853		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 854		      after, value);
 855		*data = 1;
 856		return 1;
 857	}
 858	/* restore previous status */
 859	ew32(STATUS, before);
 860
 861	if (!(adapter->flags & FLAG_IS_ICH)) {
 862		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 863		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 864		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 865		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 866	}
 867
 868	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 869	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 870	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 871	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 872	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 873	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 874	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 875	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 876	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 877	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 878
 879	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 880
 881	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 882	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 883	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 884
 885	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 886	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 887	if (!(adapter->flags & FLAG_IS_ICH))
 888		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 889	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 890	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 891	mask = 0x8003FFFF;
 892	switch (mac->type) {
 893	case e1000_ich10lan:
 894	case e1000_pchlan:
 895	case e1000_pch2lan:
 896	case e1000_pch_lpt:
 897		mask |= (1 << 18);
 898		break;
 899	default:
 900		break;
 901	}
 902
 903	if (mac->type == e1000_pch_lpt)
 904		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
 905		    E1000_FWSM_WLOCK_MAC_SHIFT;
 906
 907	for (i = 0; i < mac->rar_entry_count; i++) {
 908		if (mac->type == e1000_pch_lpt) {
 909			/* Cannot test write-protected SHRAL[n] registers */
 910			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 911				continue;
 912
 913			/* SHRAH[9] different than the others */
 914			if (i == 10)
 915				mask |= (1 << 30);
 916			else
 917				mask &= ~(1 << 30);
 918		}
 919		if (mac->type == e1000_pch2lan) {
 920			/* SHRAH[0,1,2] different than previous */
 921			if (i == 1)
 922				mask &= 0xFFF4FFFF;
 923			/* SHRAH[3] different than SHRAH[0,1,2] */
 924			if (i == 4)
 925				mask |= (1 << 30);
 926			/* RAR[1-6] owned by management engine - skipping */
 927			if (i > 0)
 928				i += 6;
 929		}
 930
 931		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 932				       0xFFFFFFFF);
 933		/* reset index to actual value */
 934		if ((mac->type == e1000_pch2lan) && (i > 6))
 935			i -= 6;
 936	}
 937
 938	for (i = 0; i < mac->mta_reg_count; i++)
 939		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 940
 941	*data = 0;
 942
 943	return 0;
 944}
 945
 946static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 947{
 948	u16 temp;
 949	u16 checksum = 0;
 950	u16 i;
 951
 952	*data = 0;
 953	/* Read and add up the contents of the EEPROM */
 954	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 955		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 956			*data = 1;
 957			return *data;
 958		}
 959		checksum += temp;
 960	}
 961
 962	/* If Checksum is not Correct return error else test passed */
 963	if ((checksum != (u16)NVM_SUM) && !(*data))
 964		*data = 2;
 965
 966	return *data;
 967}
 968
 969static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 970{
 971	struct net_device *netdev = (struct net_device *)data;
 972	struct e1000_adapter *adapter = netdev_priv(netdev);
 973	struct e1000_hw *hw = &adapter->hw;
 974
 975	adapter->test_icr |= er32(ICR);
 976
 977	return IRQ_HANDLED;
 978}
 979
 980static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 981{
 982	struct net_device *netdev = adapter->netdev;
 983	struct e1000_hw *hw = &adapter->hw;
 984	u32 mask;
 985	u32 shared_int = 1;
 986	u32 irq = adapter->pdev->irq;
 987	int i;
 988	int ret_val = 0;
 989	int int_mode = E1000E_INT_MODE_LEGACY;
 990
 991	*data = 0;
 992
 993	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
 994	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
 995		int_mode = adapter->int_mode;
 996		e1000e_reset_interrupt_capability(adapter);
 997		adapter->int_mode = E1000E_INT_MODE_LEGACY;
 998		e1000e_set_interrupt_capability(adapter);
 999	}
1000	/* Hook up test interrupt handler just for this test */
1001	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1002			 netdev)) {
1003		shared_int = 0;
1004	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1005			       netdev)) {
1006		*data = 1;
1007		ret_val = -1;
1008		goto out;
1009	}
1010	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1011
1012	/* Disable all the interrupts */
1013	ew32(IMC, 0xFFFFFFFF);
1014	e1e_flush();
1015	usleep_range(10000, 20000);
1016
1017	/* Test each interrupt */
1018	for (i = 0; i < 10; i++) {
1019		/* Interrupt to test */
1020		mask = 1 << i;
1021
1022		if (adapter->flags & FLAG_IS_ICH) {
1023			switch (mask) {
1024			case E1000_ICR_RXSEQ:
1025				continue;
1026			case 0x00000100:
1027				if (adapter->hw.mac.type == e1000_ich8lan ||
1028				    adapter->hw.mac.type == e1000_ich9lan)
1029					continue;
1030				break;
1031			default:
1032				break;
1033			}
1034		}
1035
1036		if (!shared_int) {
1037			/* Disable the interrupt to be reported in
1038			 * the cause register and then force the same
1039			 * interrupt and see if one gets posted.  If
1040			 * an interrupt was posted to the bus, the
1041			 * test failed.
1042			 */
1043			adapter->test_icr = 0;
1044			ew32(IMC, mask);
1045			ew32(ICS, mask);
1046			e1e_flush();
1047			usleep_range(10000, 20000);
1048
1049			if (adapter->test_icr & mask) {
1050				*data = 3;
1051				break;
1052			}
1053		}
1054
1055		/* Enable the interrupt to be reported in
1056		 * the cause register and then force the same
1057		 * interrupt and see if one gets posted.  If
1058		 * an interrupt was not posted to the bus, the
1059		 * test failed.
1060		 */
1061		adapter->test_icr = 0;
1062		ew32(IMS, mask);
1063		ew32(ICS, mask);
1064		e1e_flush();
1065		usleep_range(10000, 20000);
1066
1067		if (!(adapter->test_icr & mask)) {
1068			*data = 4;
1069			break;
1070		}
1071
1072		if (!shared_int) {
1073			/* Disable the other interrupts to be reported in
1074			 * the cause register and then force the other
1075			 * interrupts and see if any get posted.  If
1076			 * an interrupt was posted to the bus, the
1077			 * test failed.
1078			 */
1079			adapter->test_icr = 0;
1080			ew32(IMC, ~mask & 0x00007FFF);
1081			ew32(ICS, ~mask & 0x00007FFF);
1082			e1e_flush();
1083			usleep_range(10000, 20000);
1084
1085			if (adapter->test_icr) {
1086				*data = 5;
1087				break;
1088			}
1089		}
1090	}
1091
1092	/* Disable all the interrupts */
1093	ew32(IMC, 0xFFFFFFFF);
1094	e1e_flush();
1095	usleep_range(10000, 20000);
1096
1097	/* Unhook test interrupt handler */
1098	free_irq(irq, netdev);
1099
1100out:
1101	if (int_mode == E1000E_INT_MODE_MSIX) {
1102		e1000e_reset_interrupt_capability(adapter);
1103		adapter->int_mode = int_mode;
1104		e1000e_set_interrupt_capability(adapter);
1105	}
1106
1107	return ret_val;
1108}
1109
1110static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1111{
1112	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1113	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1114	struct pci_dev *pdev = adapter->pdev;
1115	struct e1000_buffer *buffer_info;
1116	int i;
1117
1118	if (tx_ring->desc && tx_ring->buffer_info) {
1119		for (i = 0; i < tx_ring->count; i++) {
1120			buffer_info = &tx_ring->buffer_info[i];
1121
1122			if (buffer_info->dma)
1123				dma_unmap_single(&pdev->dev,
1124						 buffer_info->dma,
1125						 buffer_info->length,
1126						 DMA_TO_DEVICE);
1127			if (buffer_info->skb)
1128				dev_kfree_skb(buffer_info->skb);
1129		}
1130	}
1131
1132	if (rx_ring->desc && rx_ring->buffer_info) {
1133		for (i = 0; i < rx_ring->count; i++) {
1134			buffer_info = &rx_ring->buffer_info[i];
1135
1136			if (buffer_info->dma)
1137				dma_unmap_single(&pdev->dev,
1138						 buffer_info->dma,
1139						 2048, DMA_FROM_DEVICE);
1140			if (buffer_info->skb)
1141				dev_kfree_skb(buffer_info->skb);
1142		}
1143	}
1144
1145	if (tx_ring->desc) {
1146		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1147				  tx_ring->dma);
1148		tx_ring->desc = NULL;
1149	}
1150	if (rx_ring->desc) {
1151		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1152				  rx_ring->dma);
1153		rx_ring->desc = NULL;
1154	}
1155
1156	kfree(tx_ring->buffer_info);
1157	tx_ring->buffer_info = NULL;
1158	kfree(rx_ring->buffer_info);
1159	rx_ring->buffer_info = NULL;
1160}
1161
1162static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1163{
1164	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1165	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1166	struct pci_dev *pdev = adapter->pdev;
1167	struct e1000_hw *hw = &adapter->hw;
1168	u32 rctl;
1169	int i;
1170	int ret_val;
1171
1172	/* Setup Tx descriptor ring and Tx buffers */
1173
1174	if (!tx_ring->count)
1175		tx_ring->count = E1000_DEFAULT_TXD;
1176
1177	tx_ring->buffer_info = kcalloc(tx_ring->count,
1178				       sizeof(struct e1000_buffer), GFP_KERNEL);
1179	if (!tx_ring->buffer_info) {
1180		ret_val = 1;
1181		goto err_nomem;
1182	}
1183
1184	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1185	tx_ring->size = ALIGN(tx_ring->size, 4096);
1186	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1187					   &tx_ring->dma, GFP_KERNEL);
1188	if (!tx_ring->desc) {
1189		ret_val = 2;
1190		goto err_nomem;
1191	}
1192	tx_ring->next_to_use = 0;
1193	tx_ring->next_to_clean = 0;
1194
1195	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1196	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1197	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1198	ew32(TDH(0), 0);
1199	ew32(TDT(0), 0);
1200	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1201	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1202	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1203
1204	for (i = 0; i < tx_ring->count; i++) {
1205		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1206		struct sk_buff *skb;
1207		unsigned int skb_size = 1024;
1208
1209		skb = alloc_skb(skb_size, GFP_KERNEL);
1210		if (!skb) {
1211			ret_val = 3;
1212			goto err_nomem;
1213		}
1214		skb_put(skb, skb_size);
1215		tx_ring->buffer_info[i].skb = skb;
1216		tx_ring->buffer_info[i].length = skb->len;
1217		tx_ring->buffer_info[i].dma =
1218		    dma_map_single(&pdev->dev, skb->data, skb->len,
1219				   DMA_TO_DEVICE);
1220		if (dma_mapping_error(&pdev->dev,
1221				      tx_ring->buffer_info[i].dma)) {
1222			ret_val = 4;
1223			goto err_nomem;
1224		}
1225		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1226		tx_desc->lower.data = cpu_to_le32(skb->len);
1227		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1228						   E1000_TXD_CMD_IFCS |
1229						   E1000_TXD_CMD_RS);
1230		tx_desc->upper.data = 0;
1231	}
1232
1233	/* Setup Rx descriptor ring and Rx buffers */
1234
1235	if (!rx_ring->count)
1236		rx_ring->count = E1000_DEFAULT_RXD;
1237
1238	rx_ring->buffer_info = kcalloc(rx_ring->count,
1239				       sizeof(struct e1000_buffer), GFP_KERNEL);
1240	if (!rx_ring->buffer_info) {
1241		ret_val = 5;
1242		goto err_nomem;
1243	}
1244
1245	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1246	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1247					   &rx_ring->dma, GFP_KERNEL);
1248	if (!rx_ring->desc) {
1249		ret_val = 6;
1250		goto err_nomem;
1251	}
1252	rx_ring->next_to_use = 0;
1253	rx_ring->next_to_clean = 0;
1254
1255	rctl = er32(RCTL);
1256	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1257		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1259	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1260	ew32(RDLEN(0), rx_ring->size);
1261	ew32(RDH(0), 0);
1262	ew32(RDT(0), 0);
1263	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1264	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1265	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1266	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1267	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1268	ew32(RCTL, rctl);
1269
1270	for (i = 0; i < rx_ring->count; i++) {
1271		union e1000_rx_desc_extended *rx_desc;
1272		struct sk_buff *skb;
1273
1274		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1275		if (!skb) {
1276			ret_val = 7;
1277			goto err_nomem;
1278		}
1279		skb_reserve(skb, NET_IP_ALIGN);
1280		rx_ring->buffer_info[i].skb = skb;
1281		rx_ring->buffer_info[i].dma =
1282		    dma_map_single(&pdev->dev, skb->data, 2048,
1283				   DMA_FROM_DEVICE);
1284		if (dma_mapping_error(&pdev->dev,
1285				      rx_ring->buffer_info[i].dma)) {
1286			ret_val = 8;
1287			goto err_nomem;
1288		}
1289		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1290		rx_desc->read.buffer_addr =
1291		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1292		memset(skb->data, 0x00, skb->len);
1293	}
1294
1295	return 0;
1296
1297err_nomem:
1298	e1000_free_desc_rings(adapter);
1299	return ret_val;
1300}
1301
1302static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1303{
1304	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1305	e1e_wphy(&adapter->hw, 29, 0x001F);
1306	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1307	e1e_wphy(&adapter->hw, 29, 0x001A);
1308	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1309}
1310
1311static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1312{
1313	struct e1000_hw *hw = &adapter->hw;
1314	u32 ctrl_reg = 0;
1315	u16 phy_reg = 0;
1316	s32 ret_val = 0;
1317
1318	hw->mac.autoneg = 0;
1319
1320	if (hw->phy.type == e1000_phy_ife) {
1321		/* force 100, set loopback */
1322		e1e_wphy(hw, MII_BMCR, 0x6100);
1323
1324		/* Now set up the MAC to the same speed/duplex as the PHY. */
1325		ctrl_reg = er32(CTRL);
1326		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1327		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1328			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1329			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1330			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1331
1332		ew32(CTRL, ctrl_reg);
1333		e1e_flush();
1334		usleep_range(500, 1000);
1335
1336		return 0;
1337	}
1338
1339	/* Specific PHY configuration for loopback */
1340	switch (hw->phy.type) {
1341	case e1000_phy_m88:
1342		/* Auto-MDI/MDIX Off */
1343		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344		/* reset to update Auto-MDI/MDIX */
1345		e1e_wphy(hw, MII_BMCR, 0x9140);
1346		/* autoneg off */
1347		e1e_wphy(hw, MII_BMCR, 0x8140);
1348		break;
1349	case e1000_phy_gg82563:
1350		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1351		break;
1352	case e1000_phy_bm:
1353		/* Set Default MAC Interface speed to 1GB */
1354		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1355		phy_reg &= ~0x0007;
1356		phy_reg |= 0x006;
1357		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1358		/* Assert SW reset for above settings to take effect */
1359		hw->phy.ops.commit(hw);
1360		usleep_range(1000, 2000);
1361		/* Force Full Duplex */
1362		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1363		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1364		/* Set Link Up (in force link) */
1365		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1366		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1367		/* Force Link */
1368		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1369		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1370		/* Set Early Link Enable */
1371		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1372		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1373		break;
1374	case e1000_phy_82577:
1375	case e1000_phy_82578:
1376		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1377		ret_val = hw->phy.ops.acquire(hw);
1378		if (ret_val) {
1379			e_err("Cannot setup 1Gbps loopback.\n");
1380			return ret_val;
1381		}
1382		e1000_configure_k1_ich8lan(hw, false);
1383		hw->phy.ops.release(hw);
1384		break;
1385	case e1000_phy_82579:
1386		/* Disable PHY energy detect power down */
1387		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1388		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1389		/* Disable full chip energy detect */
1390		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1391		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1392		/* Enable loopback on the PHY */
1393		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1394		break;
1395	default:
1396		break;
1397	}
1398
1399	/* force 1000, set loopback */
1400	e1e_wphy(hw, MII_BMCR, 0x4140);
1401	msleep(250);
1402
1403	/* Now set up the MAC to the same speed/duplex as the PHY. */
1404	ctrl_reg = er32(CTRL);
1405	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1406	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1407		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1408		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1409		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1410
1411	if (adapter->flags & FLAG_IS_ICH)
1412		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1413
1414	if (hw->phy.media_type == e1000_media_type_copper &&
1415	    hw->phy.type == e1000_phy_m88) {
1416		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1417	} else {
1418		/* Set the ILOS bit on the fiber Nic if half duplex link is
1419		 * detected.
1420		 */
1421		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1422			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423	}
1424
1425	ew32(CTRL, ctrl_reg);
1426
1427	/* Disable the receiver on the PHY so when a cable is plugged in, the
1428	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429	 */
1430	if (hw->phy.type == e1000_phy_m88)
1431		e1000_phy_disable_receiver(adapter);
1432
1433	usleep_range(500, 1000);
1434
1435	return 0;
1436}
1437
1438static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1439{
1440	struct e1000_hw *hw = &adapter->hw;
1441	u32 ctrl = er32(CTRL);
1442	int link;
1443
1444	/* special requirements for 82571/82572 fiber adapters */
1445
1446	/* jump through hoops to make sure link is up because serdes
1447	 * link is hardwired up
1448	 */
1449	ctrl |= E1000_CTRL_SLU;
1450	ew32(CTRL, ctrl);
1451
1452	/* disable autoneg */
1453	ctrl = er32(TXCW);
1454	ctrl &= ~(1 << 31);
1455	ew32(TXCW, ctrl);
1456
1457	link = (er32(STATUS) & E1000_STATUS_LU);
1458
1459	if (!link) {
1460		/* set invert loss of signal */
1461		ctrl = er32(CTRL);
1462		ctrl |= E1000_CTRL_ILOS;
1463		ew32(CTRL, ctrl);
1464	}
1465
1466	/* special write to serdes control register to enable SerDes analog
1467	 * loopback
1468	 */
1469	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1470	e1e_flush();
1471	usleep_range(10000, 20000);
1472
1473	return 0;
1474}
1475
1476/* only call this for fiber/serdes connections to es2lan */
1477static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1478{
1479	struct e1000_hw *hw = &adapter->hw;
1480	u32 ctrlext = er32(CTRL_EXT);
1481	u32 ctrl = er32(CTRL);
1482
1483	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1484	 * on mac_type 80003es2lan)
1485	 */
1486	adapter->tx_fifo_head = ctrlext;
1487
1488	/* clear the serdes mode bits, putting the device into mac loopback */
1489	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1490	ew32(CTRL_EXT, ctrlext);
1491
1492	/* force speed to 1000/FD, link up */
1493	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1494	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1495		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1496	ew32(CTRL, ctrl);
1497
1498	/* set mac loopback */
1499	ctrl = er32(RCTL);
1500	ctrl |= E1000_RCTL_LBM_MAC;
1501	ew32(RCTL, ctrl);
1502
1503	/* set testing mode parameters (no need to reset later) */
1504#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1505#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1506	ew32(KMRNCTRLSTA,
1507	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1508
1509	return 0;
1510}
1511
1512static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1513{
1514	struct e1000_hw *hw = &adapter->hw;
1515	u32 rctl;
1516
1517	if (hw->phy.media_type == e1000_media_type_fiber ||
1518	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1519		switch (hw->mac.type) {
1520		case e1000_80003es2lan:
1521			return e1000_set_es2lan_mac_loopback(adapter);
1522			break;
1523		case e1000_82571:
1524		case e1000_82572:
1525			return e1000_set_82571_fiber_loopback(adapter);
1526			break;
1527		default:
1528			rctl = er32(RCTL);
1529			rctl |= E1000_RCTL_LBM_TCVR;
1530			ew32(RCTL, rctl);
1531			return 0;
1532		}
1533	} else if (hw->phy.media_type == e1000_media_type_copper) {
1534		return e1000_integrated_phy_loopback(adapter);
1535	}
1536
1537	return 7;
1538}
1539
1540static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1541{
1542	struct e1000_hw *hw = &adapter->hw;
1543	u32 rctl;
1544	u16 phy_reg;
1545
1546	rctl = er32(RCTL);
1547	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1548	ew32(RCTL, rctl);
1549
1550	switch (hw->mac.type) {
1551	case e1000_80003es2lan:
1552		if (hw->phy.media_type == e1000_media_type_fiber ||
1553		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1554			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1555			ew32(CTRL_EXT, adapter->tx_fifo_head);
1556			adapter->tx_fifo_head = 0;
1557		}
1558		/* fall through */
1559	case e1000_82571:
1560	case e1000_82572:
1561		if (hw->phy.media_type == e1000_media_type_fiber ||
1562		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1563			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1564			e1e_flush();
1565			usleep_range(10000, 20000);
1566			break;
1567		}
1568		/* Fall Through */
1569	default:
1570		hw->mac.autoneg = 1;
1571		if (hw->phy.type == e1000_phy_gg82563)
1572			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1573		e1e_rphy(hw, MII_BMCR, &phy_reg);
1574		if (phy_reg & BMCR_LOOPBACK) {
1575			phy_reg &= ~BMCR_LOOPBACK;
1576			e1e_wphy(hw, MII_BMCR, phy_reg);
1577			if (hw->phy.ops.commit)
1578				hw->phy.ops.commit(hw);
1579		}
1580		break;
1581	}
1582}
1583
1584static void e1000_create_lbtest_frame(struct sk_buff *skb,
1585				      unsigned int frame_size)
1586{
1587	memset(skb->data, 0xFF, frame_size);
1588	frame_size &= ~1;
1589	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1590	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1591	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1592}
1593
1594static int e1000_check_lbtest_frame(struct sk_buff *skb,
1595				    unsigned int frame_size)
1596{
1597	frame_size &= ~1;
1598	if (*(skb->data + 3) == 0xFF)
1599		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1600		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1601			return 0;
1602	return 13;
1603}
1604
1605static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1606{
1607	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1608	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1609	struct pci_dev *pdev = adapter->pdev;
1610	struct e1000_hw *hw = &adapter->hw;
1611	struct e1000_buffer *buffer_info;
1612	int i, j, k, l;
1613	int lc;
1614	int good_cnt;
1615	int ret_val = 0;
1616	unsigned long time;
1617
1618	ew32(RDT(0), rx_ring->count - 1);
1619
1620	/* Calculate the loop count based on the largest descriptor ring
1621	 * The idea is to wrap the largest ring a number of times using 64
1622	 * send/receive pairs during each loop
1623	 */
1624
1625	if (rx_ring->count <= tx_ring->count)
1626		lc = ((tx_ring->count / 64) * 2) + 1;
1627	else
1628		lc = ((rx_ring->count / 64) * 2) + 1;
1629
1630	k = 0;
1631	l = 0;
1632	/* loop count loop */
1633	for (j = 0; j <= lc; j++) {
1634		/* send the packets */
1635		for (i = 0; i < 64; i++) {
1636			buffer_info = &tx_ring->buffer_info[k];
1637
1638			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1639			dma_sync_single_for_device(&pdev->dev,
1640						   buffer_info->dma,
1641						   buffer_info->length,
1642						   DMA_TO_DEVICE);
1643			k++;
1644			if (k == tx_ring->count)
1645				k = 0;
1646		}
1647		ew32(TDT(0), k);
1648		e1e_flush();
1649		msleep(200);
1650		time = jiffies;	/* set the start time for the receive */
1651		good_cnt = 0;
1652		/* receive the sent packets */
1653		do {
1654			buffer_info = &rx_ring->buffer_info[l];
1655
1656			dma_sync_single_for_cpu(&pdev->dev,
1657						buffer_info->dma, 2048,
1658						DMA_FROM_DEVICE);
1659
1660			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1661							   1024);
1662			if (!ret_val)
1663				good_cnt++;
1664			l++;
1665			if (l == rx_ring->count)
1666				l = 0;
1667			/* time + 20 msecs (200 msecs on 2.4) is more than
1668			 * enough time to complete the receives, if it's
1669			 * exceeded, break and error off
1670			 */
1671		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1672		if (good_cnt != 64) {
1673			ret_val = 13;	/* ret_val is the same as mis-compare */
1674			break;
1675		}
1676		if (time_after(jiffies, time + 20)) {
1677			ret_val = 14;	/* error code for time out error */
1678			break;
1679		}
1680	}
1681	return ret_val;
1682}
1683
1684static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1685{
1686	struct e1000_hw *hw = &adapter->hw;
1687
1688	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1689	if (hw->phy.ops.check_reset_block &&
1690	    hw->phy.ops.check_reset_block(hw)) {
1691		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1692		*data = 0;
1693		goto out;
1694	}
1695
1696	*data = e1000_setup_desc_rings(adapter);
1697	if (*data)
1698		goto out;
1699
1700	*data = e1000_setup_loopback_test(adapter);
1701	if (*data)
1702		goto err_loopback;
1703
1704	*data = e1000_run_loopback_test(adapter);
1705	e1000_loopback_cleanup(adapter);
1706
1707err_loopback:
1708	e1000_free_desc_rings(adapter);
1709out:
1710	return *data;
1711}
1712
1713static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1714{
1715	struct e1000_hw *hw = &adapter->hw;
1716
1717	*data = 0;
1718	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1719		int i = 0;
1720		hw->mac.serdes_has_link = false;
1721
1722		/* On some blade server designs, link establishment
1723		 * could take as long as 2-3 minutes
1724		 */
1725		do {
1726			hw->mac.ops.check_for_link(hw);
1727			if (hw->mac.serdes_has_link)
1728				return *data;
1729			msleep(20);
1730		} while (i++ < 3750);
1731
1732		*data = 1;
1733	} else {
1734		hw->mac.ops.check_for_link(hw);
1735		if (hw->mac.autoneg)
1736			/* On some Phy/switch combinations, link establishment
1737			 * can take a few seconds more than expected.
1738			 */
1739			msleep_interruptible(5000);
1740
1741		if (!(er32(STATUS) & E1000_STATUS_LU))
1742			*data = 1;
1743	}
1744	return *data;
1745}
1746
1747static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1748				 int sset)
1749{
1750	switch (sset) {
1751	case ETH_SS_TEST:
1752		return E1000_TEST_LEN;
1753	case ETH_SS_STATS:
1754		return E1000_STATS_LEN;
1755	default:
1756		return -EOPNOTSUPP;
1757	}
1758}
1759
1760static void e1000_diag_test(struct net_device *netdev,
1761			    struct ethtool_test *eth_test, u64 *data)
1762{
1763	struct e1000_adapter *adapter = netdev_priv(netdev);
1764	u16 autoneg_advertised;
1765	u8 forced_speed_duplex;
1766	u8 autoneg;
1767	bool if_running = netif_running(netdev);
1768
1769	pm_runtime_get_sync(netdev->dev.parent);
1770
1771	set_bit(__E1000_TESTING, &adapter->state);
1772
1773	if (!if_running) {
1774		/* Get control of and reset hardware */
1775		if (adapter->flags & FLAG_HAS_AMT)
1776			e1000e_get_hw_control(adapter);
1777
1778		e1000e_power_up_phy(adapter);
1779
1780		adapter->hw.phy.autoneg_wait_to_complete = 1;
1781		e1000e_reset(adapter);
1782		adapter->hw.phy.autoneg_wait_to_complete = 0;
1783	}
1784
1785	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1786		/* Offline tests */
1787
1788		/* save speed, duplex, autoneg settings */
1789		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1790		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1791		autoneg = adapter->hw.mac.autoneg;
1792
1793		e_info("offline testing starting\n");
1794
1795		if (if_running)
1796			/* indicate we're in test mode */
1797			dev_close(netdev);
1798
1799		if (e1000_reg_test(adapter, &data[0]))
1800			eth_test->flags |= ETH_TEST_FL_FAILED;
1801
1802		e1000e_reset(adapter);
1803		if (e1000_eeprom_test(adapter, &data[1]))
1804			eth_test->flags |= ETH_TEST_FL_FAILED;
1805
1806		e1000e_reset(adapter);
1807		if (e1000_intr_test(adapter, &data[2]))
1808			eth_test->flags |= ETH_TEST_FL_FAILED;
1809
1810		e1000e_reset(adapter);
1811		if (e1000_loopback_test(adapter, &data[3]))
1812			eth_test->flags |= ETH_TEST_FL_FAILED;
1813
1814		/* force this routine to wait until autoneg complete/timeout */
1815		adapter->hw.phy.autoneg_wait_to_complete = 1;
1816		e1000e_reset(adapter);
1817		adapter->hw.phy.autoneg_wait_to_complete = 0;
1818
1819		if (e1000_link_test(adapter, &data[4]))
1820			eth_test->flags |= ETH_TEST_FL_FAILED;
1821
1822		/* restore speed, duplex, autoneg settings */
1823		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1824		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1825		adapter->hw.mac.autoneg = autoneg;
1826		e1000e_reset(adapter);
1827
1828		clear_bit(__E1000_TESTING, &adapter->state);
1829		if (if_running)
1830			dev_open(netdev);
1831	} else {
1832		/* Online tests */
1833
1834		e_info("online testing starting\n");
1835
1836		/* register, eeprom, intr and loopback tests not run online */
1837		data[0] = 0;
1838		data[1] = 0;
1839		data[2] = 0;
1840		data[3] = 0;
1841
1842		if (e1000_link_test(adapter, &data[4]))
1843			eth_test->flags |= ETH_TEST_FL_FAILED;
1844
1845		clear_bit(__E1000_TESTING, &adapter->state);
1846	}
1847
1848	if (!if_running) {
1849		e1000e_reset(adapter);
1850
1851		if (adapter->flags & FLAG_HAS_AMT)
1852			e1000e_release_hw_control(adapter);
1853	}
1854
1855	msleep_interruptible(4 * 1000);
1856
1857	pm_runtime_put_sync(netdev->dev.parent);
1858}
1859
1860static void e1000_get_wol(struct net_device *netdev,
1861			  struct ethtool_wolinfo *wol)
1862{
1863	struct e1000_adapter *adapter = netdev_priv(netdev);
1864
1865	wol->supported = 0;
1866	wol->wolopts = 0;
1867
1868	if (!(adapter->flags & FLAG_HAS_WOL) ||
1869	    !device_can_wakeup(&adapter->pdev->dev))
1870		return;
1871
1872	wol->supported = WAKE_UCAST | WAKE_MCAST |
1873	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1874
1875	/* apply any specific unsupported masks here */
1876	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1877		wol->supported &= ~WAKE_UCAST;
1878
1879		if (adapter->wol & E1000_WUFC_EX)
1880			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1881	}
1882
1883	if (adapter->wol & E1000_WUFC_EX)
1884		wol->wolopts |= WAKE_UCAST;
1885	if (adapter->wol & E1000_WUFC_MC)
1886		wol->wolopts |= WAKE_MCAST;
1887	if (adapter->wol & E1000_WUFC_BC)
1888		wol->wolopts |= WAKE_BCAST;
1889	if (adapter->wol & E1000_WUFC_MAG)
1890		wol->wolopts |= WAKE_MAGIC;
1891	if (adapter->wol & E1000_WUFC_LNKC)
1892		wol->wolopts |= WAKE_PHY;
1893}
1894
1895static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1896{
1897	struct e1000_adapter *adapter = netdev_priv(netdev);
1898
1899	if (!(adapter->flags & FLAG_HAS_WOL) ||
1900	    !device_can_wakeup(&adapter->pdev->dev) ||
1901	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1902			      WAKE_MAGIC | WAKE_PHY)))
1903		return -EOPNOTSUPP;
1904
1905	/* these settings will always override what we currently have */
1906	adapter->wol = 0;
1907
1908	if (wol->wolopts & WAKE_UCAST)
1909		adapter->wol |= E1000_WUFC_EX;
1910	if (wol->wolopts & WAKE_MCAST)
1911		adapter->wol |= E1000_WUFC_MC;
1912	if (wol->wolopts & WAKE_BCAST)
1913		adapter->wol |= E1000_WUFC_BC;
1914	if (wol->wolopts & WAKE_MAGIC)
1915		adapter->wol |= E1000_WUFC_MAG;
1916	if (wol->wolopts & WAKE_PHY)
1917		adapter->wol |= E1000_WUFC_LNKC;
1918
1919	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1920
1921	return 0;
1922}
1923
1924static int e1000_set_phys_id(struct net_device *netdev,
1925			     enum ethtool_phys_id_state state)
1926{
1927	struct e1000_adapter *adapter = netdev_priv(netdev);
1928	struct e1000_hw *hw = &adapter->hw;
1929
1930	switch (state) {
1931	case ETHTOOL_ID_ACTIVE:
1932		pm_runtime_get_sync(netdev->dev.parent);
1933
1934		if (!hw->mac.ops.blink_led)
1935			return 2;	/* cycle on/off twice per second */
1936
1937		hw->mac.ops.blink_led(hw);
1938		break;
1939
1940	case ETHTOOL_ID_INACTIVE:
1941		if (hw->phy.type == e1000_phy_ife)
1942			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1943		hw->mac.ops.led_off(hw);
1944		hw->mac.ops.cleanup_led(hw);
1945		pm_runtime_put_sync(netdev->dev.parent);
1946		break;
1947
1948	case ETHTOOL_ID_ON:
1949		hw->mac.ops.led_on(hw);
1950		break;
1951
1952	case ETHTOOL_ID_OFF:
1953		hw->mac.ops.led_off(hw);
1954		break;
1955	}
1956
1957	return 0;
1958}
1959
1960static int e1000_get_coalesce(struct net_device *netdev,
1961			      struct ethtool_coalesce *ec)
1962{
1963	struct e1000_adapter *adapter = netdev_priv(netdev);
1964
1965	if (adapter->itr_setting <= 4)
1966		ec->rx_coalesce_usecs = adapter->itr_setting;
1967	else
1968		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1969
1970	return 0;
1971}
1972
1973static int e1000_set_coalesce(struct net_device *netdev,
1974			      struct ethtool_coalesce *ec)
1975{
1976	struct e1000_adapter *adapter = netdev_priv(netdev);
1977
1978	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1979	    ((ec->rx_coalesce_usecs > 4) &&
1980	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1981	    (ec->rx_coalesce_usecs == 2))
1982		return -EINVAL;
1983
1984	if (ec->rx_coalesce_usecs == 4) {
1985		adapter->itr_setting = 4;
1986		adapter->itr = adapter->itr_setting;
1987	} else if (ec->rx_coalesce_usecs <= 3) {
1988		adapter->itr = 20000;
1989		adapter->itr_setting = ec->rx_coalesce_usecs;
1990	} else {
1991		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1992		adapter->itr_setting = adapter->itr & ~3;
1993	}
1994
1995	pm_runtime_get_sync(netdev->dev.parent);
1996
1997	if (adapter->itr_setting != 0)
1998		e1000e_write_itr(adapter, adapter->itr);
1999	else
2000		e1000e_write_itr(adapter, 0);
2001
2002	pm_runtime_put_sync(netdev->dev.parent);
2003
2004	return 0;
2005}
2006
2007static int e1000_nway_reset(struct net_device *netdev)
2008{
2009	struct e1000_adapter *adapter = netdev_priv(netdev);
2010
2011	if (!netif_running(netdev))
2012		return -EAGAIN;
2013
2014	if (!adapter->hw.mac.autoneg)
2015		return -EINVAL;
2016
2017	pm_runtime_get_sync(netdev->dev.parent);
2018	e1000e_reinit_locked(adapter);
2019	pm_runtime_put_sync(netdev->dev.parent);
2020
2021	return 0;
2022}
2023
2024static void e1000_get_ethtool_stats(struct net_device *netdev,
2025				    struct ethtool_stats __always_unused *stats,
2026				    u64 *data)
2027{
2028	struct e1000_adapter *adapter = netdev_priv(netdev);
2029	struct rtnl_link_stats64 net_stats;
2030	int i;
2031	char *p = NULL;
2032
2033	pm_runtime_get_sync(netdev->dev.parent);
2034
2035	e1000e_get_stats64(netdev, &net_stats);
2036
2037	pm_runtime_put_sync(netdev->dev.parent);
2038
2039	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2040		switch (e1000_gstrings_stats[i].type) {
2041		case NETDEV_STATS:
2042			p = (char *)&net_stats +
2043			    e1000_gstrings_stats[i].stat_offset;
2044			break;
2045		case E1000_STATS:
2046			p = (char *)adapter +
2047			    e1000_gstrings_stats[i].stat_offset;
2048			break;
2049		default:
2050			data[i] = 0;
2051			continue;
2052		}
2053
2054		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2055			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2056	}
2057}
2058
2059static void e1000_get_strings(struct net_device __always_unused *netdev,
2060			      u32 stringset, u8 *data)
2061{
2062	u8 *p = data;
2063	int i;
2064
2065	switch (stringset) {
2066	case ETH_SS_TEST:
2067		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2068		break;
2069	case ETH_SS_STATS:
2070		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2071			memcpy(p, e1000_gstrings_stats[i].stat_string,
2072			       ETH_GSTRING_LEN);
2073			p += ETH_GSTRING_LEN;
2074		}
2075		break;
2076	}
2077}
2078
2079static int e1000_get_rxnfc(struct net_device *netdev,
2080			   struct ethtool_rxnfc *info,
2081			   u32 __always_unused *rule_locs)
2082{
2083	info->data = 0;
2084
2085	switch (info->cmd) {
2086	case ETHTOOL_GRXFH: {
2087		struct e1000_adapter *adapter = netdev_priv(netdev);
2088		struct e1000_hw *hw = &adapter->hw;
2089		u32 mrqc;
2090
2091		pm_runtime_get_sync(netdev->dev.parent);
2092		mrqc = er32(MRQC);
2093		pm_runtime_put_sync(netdev->dev.parent);
2094
2095		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2096			return 0;
2097
2098		switch (info->flow_type) {
2099		case TCP_V4_FLOW:
2100			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2101				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2102			/* fall through */
2103		case UDP_V4_FLOW:
2104		case SCTP_V4_FLOW:
2105		case AH_ESP_V4_FLOW:
2106		case IPV4_FLOW:
2107			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2108				info->data |= RXH_IP_SRC | RXH_IP_DST;
2109			break;
2110		case TCP_V6_FLOW:
2111			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2112				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2113			/* fall through */
2114		case UDP_V6_FLOW:
2115		case SCTP_V6_FLOW:
2116		case AH_ESP_V6_FLOW:
2117		case IPV6_FLOW:
2118			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2119				info->data |= RXH_IP_SRC | RXH_IP_DST;
2120			break;
2121		default:
2122			break;
2123		}
2124		return 0;
2125	}
2126	default:
2127		return -EOPNOTSUPP;
2128	}
2129}
2130
2131static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2132{
2133	struct e1000_adapter *adapter = netdev_priv(netdev);
2134	struct e1000_hw *hw = &adapter->hw;
2135	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2136	u32 ret_val;
2137
2138	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2139		return -EOPNOTSUPP;
2140
2141	switch (hw->phy.type) {
2142	case e1000_phy_82579:
2143		cap_addr = I82579_EEE_CAPABILITY;
2144		lpa_addr = I82579_EEE_LP_ABILITY;
2145		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2146		break;
2147	case e1000_phy_i217:
2148		cap_addr = I217_EEE_CAPABILITY;
2149		lpa_addr = I217_EEE_LP_ABILITY;
2150		pcs_stat_addr = I217_EEE_PCS_STATUS;
2151		break;
2152	default:
2153		return -EOPNOTSUPP;
2154	}
2155
2156	pm_runtime_get_sync(netdev->dev.parent);
2157
2158	ret_val = hw->phy.ops.acquire(hw);
2159	if (ret_val) {
2160		pm_runtime_put_sync(netdev->dev.parent);
2161		return -EBUSY;
2162	}
2163
2164	/* EEE Capability */
2165	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2166	if (ret_val)
2167		goto release;
2168	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2169
2170	/* EEE Advertised */
2171	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2172
2173	/* EEE Link Partner Advertised */
2174	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2175	if (ret_val)
2176		goto release;
2177	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2178
2179	/* EEE PCS Status */
2180	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2181	if (ret_val)
2182		goto release;
2183	if (hw->phy.type == e1000_phy_82579)
2184		phy_data <<= 8;
2185
2186	/* Result of the EEE auto negotiation - there is no register that
2187	 * has the status of the EEE negotiation so do a best-guess based
2188	 * on whether Tx or Rx LPI indications have been received.
2189	 */
2190	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2191		edata->eee_active = true;
2192
2193	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2194	edata->tx_lpi_enabled = true;
2195	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2196
2197release:
2198	hw->phy.ops.release(hw);
2199	if (ret_val)
2200		ret_val = -ENODATA;
2201
2202	pm_runtime_put_sync(netdev->dev.parent);
2203
2204	return ret_val;
2205}
2206
2207static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2208{
2209	struct e1000_adapter *adapter = netdev_priv(netdev);
2210	struct e1000_hw *hw = &adapter->hw;
2211	struct ethtool_eee eee_curr;
2212	s32 ret_val;
2213
2214	ret_val = e1000e_get_eee(netdev, &eee_curr);
2215	if (ret_val)
2216		return ret_val;
2217
2218	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2219		e_err("Setting EEE tx-lpi is not supported\n");
2220		return -EINVAL;
2221	}
2222
2223	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2224		e_err("Setting EEE Tx LPI timer is not supported\n");
2225		return -EINVAL;
2226	}
2227
2228	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2229		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2230		return -EINVAL;
2231	}
2232
2233	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2234
2235	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2236
2237	pm_runtime_get_sync(netdev->dev.parent);
2238
2239	/* reset the link */
2240	if (netif_running(netdev))
2241		e1000e_reinit_locked(adapter);
2242	else
2243		e1000e_reset(adapter);
2244
2245	pm_runtime_put_sync(netdev->dev.parent);
2246
2247	return 0;
2248}
2249
2250static int e1000e_get_ts_info(struct net_device *netdev,
2251			      struct ethtool_ts_info *info)
2252{
2253	struct e1000_adapter *adapter = netdev_priv(netdev);
2254
2255	ethtool_op_get_ts_info(netdev, info);
2256
2257	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2258		return 0;
2259
2260	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2261				  SOF_TIMESTAMPING_RX_HARDWARE |
2262				  SOF_TIMESTAMPING_RAW_HARDWARE);
2263
2264	info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2265
2266	info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2267			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2268			    (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2269			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2270			    (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2271			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2272			    (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2273			    (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2274			    (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2275			    (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2276			    (1 << HWTSTAMP_FILTER_ALL));
2277
2278	if (adapter->ptp_clock)
2279		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2280
2281	return 0;
2282}
2283
2284static const struct ethtool_ops e1000_ethtool_ops = {
2285	.get_settings		= e1000_get_settings,
2286	.set_settings		= e1000_set_settings,
2287	.get_drvinfo		= e1000_get_drvinfo,
2288	.get_regs_len		= e1000_get_regs_len,
2289	.get_regs		= e1000_get_regs,
2290	.get_wol		= e1000_get_wol,
2291	.set_wol		= e1000_set_wol,
2292	.get_msglevel		= e1000_get_msglevel,
2293	.set_msglevel		= e1000_set_msglevel,
2294	.nway_reset		= e1000_nway_reset,
2295	.get_link		= ethtool_op_get_link,
2296	.get_eeprom_len		= e1000_get_eeprom_len,
2297	.get_eeprom		= e1000_get_eeprom,
2298	.set_eeprom		= e1000_set_eeprom,
2299	.get_ringparam		= e1000_get_ringparam,
2300	.set_ringparam		= e1000_set_ringparam,
2301	.get_pauseparam		= e1000_get_pauseparam,
2302	.set_pauseparam		= e1000_set_pauseparam,
2303	.self_test		= e1000_diag_test,
2304	.get_strings		= e1000_get_strings,
2305	.set_phys_id		= e1000_set_phys_id,
2306	.get_ethtool_stats	= e1000_get_ethtool_stats,
2307	.get_sset_count		= e1000e_get_sset_count,
2308	.get_coalesce		= e1000_get_coalesce,
2309	.set_coalesce		= e1000_set_coalesce,
2310	.get_rxnfc		= e1000_get_rxnfc,
2311	.get_ts_info		= e1000e_get_ts_info,
2312	.get_eee		= e1000e_get_eee,
2313	.set_eee		= e1000e_set_eee,
2314};
2315
2316void e1000e_set_ethtool_ops(struct net_device *netdev)
2317{
2318	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2319}