Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
 
  28
  29#include "kernel.h"
  30#include "kstack.h"
  31
  32/* Sparc64 chips have two performance counters, 32-bits each, with
  33 * overflow interrupts generated on transition from 0xffffffff to 0.
  34 * The counters are accessed in one go using a 64-bit register.
  35 *
  36 * Both counters are controlled using a single control register.  The
  37 * only way to stop all sampling is to clear all of the context (user,
  38 * supervisor, hypervisor) sampling enable bits.  But these bits apply
  39 * to both counters, thus the two counters can't be enabled/disabled
  40 * individually.
  41 *
  42 * The control register has two event fields, one for each of the two
  43 * counters.  It's thus nearly impossible to have one counter going
  44 * while keeping the other one stopped.  Therefore it is possible to
  45 * get overflow interrupts for counters not currently "in use" and
  46 * that condition must be checked in the overflow interrupt handler.
 
 
 
 
 
 
 
  47 *
  48 * So we use a hack, in that we program inactive counters with the
  49 * "sw_count0" and "sw_count1" events.  These count how many times
  50 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  51 * unusual way to encode a NOP and therefore will not trigger in
  52 * normal code.
 
 
 
 
 
 
 
  53 */
  54
  55#define MAX_HWEVENTS			2
 
  56#define MAX_PERIOD			((1UL << 32) - 1)
  57
  58#define PIC_UPPER_INDEX			0
  59#define PIC_LOWER_INDEX			1
  60#define PIC_NO_INDEX			-1
  61
  62struct cpu_hw_events {
  63	/* Number of events currently scheduled onto this cpu.
  64	 * This tells how many entries in the arrays below
  65	 * are valid.
  66	 */
  67	int			n_events;
  68
  69	/* Number of new events added since the last hw_perf_disable().
  70	 * This works because the perf event layer always adds new
  71	 * events inside of a perf_{disable,enable}() sequence.
  72	 */
  73	int			n_added;
  74
  75	/* Array of events current scheduled on this cpu.  */
  76	struct perf_event	*event[MAX_HWEVENTS];
  77
  78	/* Array of encoded longs, specifying the %pcr register
  79	 * encoding and the mask of PIC counters this even can
  80	 * be scheduled on.  See perf_event_encode() et al.
  81	 */
  82	unsigned long		events[MAX_HWEVENTS];
  83
  84	/* The current counter index assigned to an event.  When the
  85	 * event hasn't been programmed into the cpu yet, this will
  86	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
  87	 * we ought to schedule the event.
  88	 */
  89	int			current_idx[MAX_HWEVENTS];
  90
  91	/* Software copy of %pcr register on this cpu.  */
  92	u64			pcr;
  93
  94	/* Enabled/disable state.  */
  95	int			enabled;
  96
  97	unsigned int		group_flag;
  98};
  99DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 100
 101/* An event map describes the characteristics of a performance
 102 * counter event.  In particular it gives the encoding as well as
 103 * a mask telling which counters the event can be measured on.
 
 
 104 */
 105struct perf_event_map {
 106	u16	encoding;
 107	u8	pic_mask;
 108#define PIC_NONE	0x00
 109#define PIC_UPPER	0x01
 110#define PIC_LOWER	0x02
 111};
 112
 113/* Encode a perf_event_map entry into a long.  */
 114static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 115{
 116	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 117}
 118
 119static u8 perf_event_get_msk(unsigned long val)
 120{
 121	return val & 0xff;
 122}
 123
 124static u64 perf_event_get_enc(unsigned long val)
 125{
 126	return val >> 16;
 127}
 128
 129#define C(x) PERF_COUNT_HW_CACHE_##x
 130
 131#define CACHE_OP_UNSUPPORTED	0xfffe
 132#define CACHE_OP_NONSENSE	0xffff
 133
 134typedef struct perf_event_map cache_map_t
 135				[PERF_COUNT_HW_CACHE_MAX]
 136				[PERF_COUNT_HW_CACHE_OP_MAX]
 137				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 138
 139struct sparc_pmu {
 140	const struct perf_event_map	*(*event_map)(int);
 141	const cache_map_t		*cache_map;
 142	int				max_events;
 
 
 143	int				upper_shift;
 144	int				lower_shift;
 145	int				event_mask;
 
 
 146	int				hv_bit;
 147	int				irq_bit;
 148	int				upper_nop;
 149	int				lower_nop;
 
 
 
 
 
 
 150};
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152static const struct perf_event_map ultra3_perfmon_event_map[] = {
 153	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 154	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 155	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 156	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 157};
 158
 159static const struct perf_event_map *ultra3_event_map(int event_id)
 160{
 161	return &ultra3_perfmon_event_map[event_id];
 162}
 163
 164static const cache_map_t ultra3_cache_map = {
 165[C(L1D)] = {
 166	[C(OP_READ)] = {
 167		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 168		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 169	},
 170	[C(OP_WRITE)] = {
 171		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 172		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 173	},
 174	[C(OP_PREFETCH)] = {
 175		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 176		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 177	},
 178},
 179[C(L1I)] = {
 180	[C(OP_READ)] = {
 181		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 182		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 183	},
 184	[ C(OP_WRITE) ] = {
 185		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 186		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 187	},
 188	[ C(OP_PREFETCH) ] = {
 189		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 190		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 191	},
 192},
 193[C(LL)] = {
 194	[C(OP_READ)] = {
 195		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 196		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 197	},
 198	[C(OP_WRITE)] = {
 199		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 200		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 201	},
 202	[C(OP_PREFETCH)] = {
 203		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 204		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 205	},
 206},
 207[C(DTLB)] = {
 208	[C(OP_READ)] = {
 209		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 210		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 211	},
 212	[ C(OP_WRITE) ] = {
 213		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 214		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 215	},
 216	[ C(OP_PREFETCH) ] = {
 217		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 218		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 219	},
 220},
 221[C(ITLB)] = {
 222	[C(OP_READ)] = {
 223		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 224		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 225	},
 226	[ C(OP_WRITE) ] = {
 227		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 228		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 229	},
 230	[ C(OP_PREFETCH) ] = {
 231		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 232		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 233	},
 234},
 235[C(BPU)] = {
 236	[C(OP_READ)] = {
 237		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 238		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 239	},
 240	[ C(OP_WRITE) ] = {
 241		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 242		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 243	},
 244	[ C(OP_PREFETCH) ] = {
 245		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 246		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 247	},
 248},
 249[C(NODE)] = {
 250	[C(OP_READ)] = {
 251		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 252		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 253	},
 254	[ C(OP_WRITE) ] = {
 255		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 256		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 257	},
 258	[ C(OP_PREFETCH) ] = {
 259		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 260		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 261	},
 262},
 263};
 264
 265static const struct sparc_pmu ultra3_pmu = {
 266	.event_map	= ultra3_event_map,
 267	.cache_map	= &ultra3_cache_map,
 268	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 
 
 269	.upper_shift	= 11,
 270	.lower_shift	= 4,
 271	.event_mask	= 0x3f,
 
 
 272	.upper_nop	= 0x1c,
 273	.lower_nop	= 0x14,
 
 
 
 
 
 274};
 275
 276/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 277 * only instructions, so it is free running which creates all kinds of
 278 * problems.  Some hardware designs make one wonder if the creator
 279 * even looked at how this stuff gets used by software.
 280 */
 281static const struct perf_event_map niagara1_perfmon_event_map[] = {
 282	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 283	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 284	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 285	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 286};
 287
 288static const struct perf_event_map *niagara1_event_map(int event_id)
 289{
 290	return &niagara1_perfmon_event_map[event_id];
 291}
 292
 293static const cache_map_t niagara1_cache_map = {
 294[C(L1D)] = {
 295	[C(OP_READ)] = {
 296		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 297		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 298	},
 299	[C(OP_WRITE)] = {
 300		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 301		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 302	},
 303	[C(OP_PREFETCH)] = {
 304		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 305		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 306	},
 307},
 308[C(L1I)] = {
 309	[C(OP_READ)] = {
 310		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 311		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 312	},
 313	[ C(OP_WRITE) ] = {
 314		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 315		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 316	},
 317	[ C(OP_PREFETCH) ] = {
 318		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 319		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 320	},
 321},
 322[C(LL)] = {
 323	[C(OP_READ)] = {
 324		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 325		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 326	},
 327	[C(OP_WRITE)] = {
 328		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 329		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 330	},
 331	[C(OP_PREFETCH)] = {
 332		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 333		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 334	},
 335},
 336[C(DTLB)] = {
 337	[C(OP_READ)] = {
 338		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 339		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 340	},
 341	[ C(OP_WRITE) ] = {
 342		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 343		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 344	},
 345	[ C(OP_PREFETCH) ] = {
 346		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 347		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 348	},
 349},
 350[C(ITLB)] = {
 351	[C(OP_READ)] = {
 352		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 353		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 354	},
 355	[ C(OP_WRITE) ] = {
 356		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 357		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 358	},
 359	[ C(OP_PREFETCH) ] = {
 360		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 361		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 362	},
 363},
 364[C(BPU)] = {
 365	[C(OP_READ)] = {
 366		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 367		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 368	},
 369	[ C(OP_WRITE) ] = {
 370		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 371		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 372	},
 373	[ C(OP_PREFETCH) ] = {
 374		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 375		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 376	},
 377},
 378[C(NODE)] = {
 379	[C(OP_READ)] = {
 380		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 381		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 382	},
 383	[ C(OP_WRITE) ] = {
 384		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 385		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 386	},
 387	[ C(OP_PREFETCH) ] = {
 388		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 389		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 390	},
 391},
 392};
 393
 394static const struct sparc_pmu niagara1_pmu = {
 395	.event_map	= niagara1_event_map,
 396	.cache_map	= &niagara1_cache_map,
 397	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 
 
 398	.upper_shift	= 0,
 399	.lower_shift	= 4,
 400	.event_mask	= 0x7,
 
 
 401	.upper_nop	= 0x0,
 402	.lower_nop	= 0x0,
 
 
 
 
 
 403};
 404
 405static const struct perf_event_map niagara2_perfmon_event_map[] = {
 406	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 407	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 408	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 409	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 410	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 411	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 412};
 413
 414static const struct perf_event_map *niagara2_event_map(int event_id)
 415{
 416	return &niagara2_perfmon_event_map[event_id];
 417}
 418
 419static const cache_map_t niagara2_cache_map = {
 420[C(L1D)] = {
 421	[C(OP_READ)] = {
 422		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 423		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 424	},
 425	[C(OP_WRITE)] = {
 426		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 427		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 428	},
 429	[C(OP_PREFETCH)] = {
 430		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 431		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 432	},
 433},
 434[C(L1I)] = {
 435	[C(OP_READ)] = {
 436		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 437		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 438	},
 439	[ C(OP_WRITE) ] = {
 440		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 441		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 442	},
 443	[ C(OP_PREFETCH) ] = {
 444		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 445		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 446	},
 447},
 448[C(LL)] = {
 449	[C(OP_READ)] = {
 450		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 451		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 452	},
 453	[C(OP_WRITE)] = {
 454		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 455		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 456	},
 457	[C(OP_PREFETCH)] = {
 458		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 459		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 460	},
 461},
 462[C(DTLB)] = {
 463	[C(OP_READ)] = {
 464		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 465		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 466	},
 467	[ C(OP_WRITE) ] = {
 468		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 469		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 470	},
 471	[ C(OP_PREFETCH) ] = {
 472		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 473		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 474	},
 475},
 476[C(ITLB)] = {
 477	[C(OP_READ)] = {
 478		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 479		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 480	},
 481	[ C(OP_WRITE) ] = {
 482		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 483		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 484	},
 485	[ C(OP_PREFETCH) ] = {
 486		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 487		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 488	},
 489},
 490[C(BPU)] = {
 491	[C(OP_READ)] = {
 492		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 493		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 494	},
 495	[ C(OP_WRITE) ] = {
 496		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 497		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 498	},
 499	[ C(OP_PREFETCH) ] = {
 500		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 501		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 502	},
 503},
 504[C(NODE)] = {
 505	[C(OP_READ)] = {
 506		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 507		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 508	},
 509	[ C(OP_WRITE) ] = {
 510		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 511		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 512	},
 513	[ C(OP_PREFETCH) ] = {
 514		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 515		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 516	},
 517},
 518};
 519
 520static const struct sparc_pmu niagara2_pmu = {
 521	.event_map	= niagara2_event_map,
 522	.cache_map	= &niagara2_cache_map,
 523	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 
 
 524	.upper_shift	= 19,
 525	.lower_shift	= 6,
 526	.event_mask	= 0xfff,
 527	.hv_bit		= 0x8,
 
 
 528	.irq_bit	= 0x30,
 529	.upper_nop	= 0x220,
 530	.lower_nop	= 0x220,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531};
 532
 533static const struct sparc_pmu *sparc_pmu __read_mostly;
 534
 535static u64 event_encoding(u64 event_id, int idx)
 536{
 537	if (idx == PIC_UPPER_INDEX)
 538		event_id <<= sparc_pmu->upper_shift;
 539	else
 540		event_id <<= sparc_pmu->lower_shift;
 541	return event_id;
 542}
 543
 544static u64 mask_for_index(int idx)
 545{
 546	return event_encoding(sparc_pmu->event_mask, idx);
 547}
 548
 549static u64 nop_for_index(int idx)
 550{
 551	return event_encoding(idx == PIC_UPPER_INDEX ?
 552			      sparc_pmu->upper_nop :
 553			      sparc_pmu->lower_nop, idx);
 554}
 555
 556static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 557{
 558	u64 val, mask = mask_for_index(idx);
 
 
 
 
 
 
 559
 560	val = cpuc->pcr;
 561	val &= ~mask;
 562	val |= hwc->config;
 563	cpuc->pcr = val;
 564
 565	pcr_ops->write(cpuc->pcr);
 566}
 567
 568static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 569{
 570	u64 mask = mask_for_index(idx);
 571	u64 nop = nop_for_index(idx);
 
 572	u64 val;
 573
 574	val = cpuc->pcr;
 
 
 
 575	val &= ~mask;
 576	val |= nop;
 577	cpuc->pcr = val;
 578
 579	pcr_ops->write(cpuc->pcr);
 580}
 581
 582static u32 read_pmc(int idx)
 583{
 584	u64 val;
 585
 586	read_pic(val);
 587	if (idx == PIC_UPPER_INDEX)
 588		val >>= 32;
 589
 590	return val & 0xffffffff;
 591}
 592
 593static void write_pmc(int idx, u64 val)
 594{
 595	u64 shift, mask, pic;
 596
 597	shift = 0;
 598	if (idx == PIC_UPPER_INDEX)
 599		shift = 32;
 600
 601	mask = ((u64) 0xffffffff) << shift;
 602	val <<= shift;
 603
 604	read_pic(pic);
 605	pic &= ~mask;
 606	pic |= val;
 607	write_pic(pic);
 608}
 609
 610static u64 sparc_perf_event_update(struct perf_event *event,
 611				   struct hw_perf_event *hwc, int idx)
 612{
 613	int shift = 64 - 32;
 614	u64 prev_raw_count, new_raw_count;
 615	s64 delta;
 616
 617again:
 618	prev_raw_count = local64_read(&hwc->prev_count);
 619	new_raw_count = read_pmc(idx);
 620
 621	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 622			     new_raw_count) != prev_raw_count)
 623		goto again;
 624
 625	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 626	delta >>= shift;
 627
 628	local64_add(delta, &event->count);
 629	local64_sub(delta, &hwc->period_left);
 630
 631	return new_raw_count;
 632}
 633
 634static int sparc_perf_event_set_period(struct perf_event *event,
 635				       struct hw_perf_event *hwc, int idx)
 636{
 637	s64 left = local64_read(&hwc->period_left);
 638	s64 period = hwc->sample_period;
 639	int ret = 0;
 640
 641	if (unlikely(left <= -period)) {
 642		left = period;
 643		local64_set(&hwc->period_left, left);
 644		hwc->last_period = period;
 645		ret = 1;
 646	}
 647
 648	if (unlikely(left <= 0)) {
 649		left += period;
 650		local64_set(&hwc->period_left, left);
 651		hwc->last_period = period;
 652		ret = 1;
 653	}
 654	if (left > MAX_PERIOD)
 655		left = MAX_PERIOD;
 656
 657	local64_set(&hwc->prev_count, (u64)-left);
 658
 659	write_pmc(idx, (u64)(-left) & 0xffffffff);
 660
 661	perf_event_update_userpage(event);
 662
 663	return ret;
 664}
 665
 666/* If performance event entries have been added, move existing
 667 * events around (if necessary) and then assign new entries to
 668 * counters.
 669 */
 670static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
 671{
 672	int i;
 673
 674	if (!cpuc->n_added)
 675		goto out;
 676
 677	/* Read in the counters which are moving.  */
 678	for (i = 0; i < cpuc->n_events; i++) {
 679		struct perf_event *cp = cpuc->event[i];
 680
 681		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 682		    cpuc->current_idx[i] != cp->hw.idx) {
 683			sparc_perf_event_update(cp, &cp->hw,
 684						cpuc->current_idx[i]);
 685			cpuc->current_idx[i] = PIC_NO_INDEX;
 686		}
 687	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688
 689	/* Assign to counters all unassigned events.  */
 690	for (i = 0; i < cpuc->n_events; i++) {
 691		struct perf_event *cp = cpuc->event[i];
 692		struct hw_perf_event *hwc = &cp->hw;
 693		int idx = hwc->idx;
 694		u64 enc;
 695
 696		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 697			continue;
 698
 699		sparc_perf_event_set_period(cp, hwc, idx);
 700		cpuc->current_idx[i] = idx;
 701
 702		enc = perf_event_get_enc(cpuc->events[i]);
 703		pcr &= ~mask_for_index(idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704		if (hwc->state & PERF_HES_STOPPED)
 705			pcr |= nop_for_index(idx);
 706		else
 707			pcr |= event_encoding(enc, idx);
 708	}
 709out:
 710	return pcr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711}
 712
 713static void sparc_pmu_enable(struct pmu *pmu)
 714{
 715	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 716	u64 pcr;
 717
 718	if (cpuc->enabled)
 719		return;
 720
 721	cpuc->enabled = 1;
 722	barrier();
 723
 724	pcr = cpuc->pcr;
 725	if (!cpuc->n_events) {
 726		pcr = 0;
 727	} else {
 728		pcr = maybe_change_configuration(cpuc, pcr);
 729
 730		/* We require that all of the events have the same
 731		 * configuration, so just fetch the settings from the
 732		 * first entry.
 733		 */
 734		cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
 735	}
 736
 737	pcr_ops->write(cpuc->pcr);
 
 738}
 739
 740static void sparc_pmu_disable(struct pmu *pmu)
 741{
 742	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 743	u64 val;
 744
 745	if (!cpuc->enabled)
 746		return;
 747
 748	cpuc->enabled = 0;
 749	cpuc->n_added = 0;
 750
 751	val = cpuc->pcr;
 752	val &= ~(PCR_UTRACE | PCR_STRACE |
 753		 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
 754	cpuc->pcr = val;
 755
 756	pcr_ops->write(cpuc->pcr);
 
 
 
 
 757}
 758
 759static int active_event_index(struct cpu_hw_events *cpuc,
 760			      struct perf_event *event)
 761{
 762	int i;
 763
 764	for (i = 0; i < cpuc->n_events; i++) {
 765		if (cpuc->event[i] == event)
 766			break;
 767	}
 768	BUG_ON(i == cpuc->n_events);
 769	return cpuc->current_idx[i];
 770}
 771
 772static void sparc_pmu_start(struct perf_event *event, int flags)
 773{
 774	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 775	int idx = active_event_index(cpuc, event);
 776
 777	if (flags & PERF_EF_RELOAD) {
 778		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 779		sparc_perf_event_set_period(event, &event->hw, idx);
 780	}
 781
 782	event->hw.state = 0;
 783
 784	sparc_pmu_enable_event(cpuc, &event->hw, idx);
 785}
 786
 787static void sparc_pmu_stop(struct perf_event *event, int flags)
 788{
 789	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 790	int idx = active_event_index(cpuc, event);
 791
 792	if (!(event->hw.state & PERF_HES_STOPPED)) {
 793		sparc_pmu_disable_event(cpuc, &event->hw, idx);
 794		event->hw.state |= PERF_HES_STOPPED;
 795	}
 796
 797	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
 798		sparc_perf_event_update(event, &event->hw, idx);
 799		event->hw.state |= PERF_HES_UPTODATE;
 800	}
 801}
 802
 803static void sparc_pmu_del(struct perf_event *event, int _flags)
 804{
 805	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 806	unsigned long flags;
 807	int i;
 808
 809	local_irq_save(flags);
 810	perf_pmu_disable(event->pmu);
 811
 812	for (i = 0; i < cpuc->n_events; i++) {
 813		if (event == cpuc->event[i]) {
 814			/* Absorb the final count and turn off the
 815			 * event.
 816			 */
 817			sparc_pmu_stop(event, PERF_EF_UPDATE);
 818
 819			/* Shift remaining entries down into
 820			 * the existing slot.
 821			 */
 822			while (++i < cpuc->n_events) {
 823				cpuc->event[i - 1] = cpuc->event[i];
 824				cpuc->events[i - 1] = cpuc->events[i];
 825				cpuc->current_idx[i - 1] =
 826					cpuc->current_idx[i];
 827			}
 828
 829			perf_event_update_userpage(event);
 830
 831			cpuc->n_events--;
 832			break;
 833		}
 834	}
 835
 836	perf_pmu_enable(event->pmu);
 837	local_irq_restore(flags);
 838}
 839
 840static void sparc_pmu_read(struct perf_event *event)
 841{
 842	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 843	int idx = active_event_index(cpuc, event);
 844	struct hw_perf_event *hwc = &event->hw;
 845
 846	sparc_perf_event_update(event, hwc, idx);
 847}
 848
 849static atomic_t active_events = ATOMIC_INIT(0);
 850static DEFINE_MUTEX(pmc_grab_mutex);
 851
 852static void perf_stop_nmi_watchdog(void *unused)
 853{
 854	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 
 855
 856	stop_nmi_watchdog(NULL);
 857	cpuc->pcr = pcr_ops->read();
 
 858}
 859
 860void perf_event_grab_pmc(void)
 861{
 862	if (atomic_inc_not_zero(&active_events))
 863		return;
 864
 865	mutex_lock(&pmc_grab_mutex);
 866	if (atomic_read(&active_events) == 0) {
 867		if (atomic_read(&nmi_active) > 0) {
 868			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
 869			BUG_ON(atomic_read(&nmi_active) != 0);
 870		}
 871		atomic_inc(&active_events);
 872	}
 873	mutex_unlock(&pmc_grab_mutex);
 874}
 875
 876void perf_event_release_pmc(void)
 877{
 878	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
 879		if (atomic_read(&nmi_active) == 0)
 880			on_each_cpu(start_nmi_watchdog, NULL, 1);
 881		mutex_unlock(&pmc_grab_mutex);
 882	}
 883}
 884
 885static const struct perf_event_map *sparc_map_cache_event(u64 config)
 886{
 887	unsigned int cache_type, cache_op, cache_result;
 888	const struct perf_event_map *pmap;
 889
 890	if (!sparc_pmu->cache_map)
 891		return ERR_PTR(-ENOENT);
 892
 893	cache_type = (config >>  0) & 0xff;
 894	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 895		return ERR_PTR(-EINVAL);
 896
 897	cache_op = (config >>  8) & 0xff;
 898	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 899		return ERR_PTR(-EINVAL);
 900
 901	cache_result = (config >> 16) & 0xff;
 902	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 903		return ERR_PTR(-EINVAL);
 904
 905	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
 906
 907	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
 908		return ERR_PTR(-ENOENT);
 909
 910	if (pmap->encoding == CACHE_OP_NONSENSE)
 911		return ERR_PTR(-EINVAL);
 912
 913	return pmap;
 914}
 915
 916static void hw_perf_event_destroy(struct perf_event *event)
 917{
 918	perf_event_release_pmc();
 919}
 920
 921/* Make sure all events can be scheduled into the hardware at
 922 * the same time.  This is simplified by the fact that we only
 923 * need to support 2 simultaneous HW events.
 924 *
 925 * As a side effect, the evts[]->hw.idx values will be assigned
 926 * on success.  These are pending indexes.  When the events are
 927 * actually programmed into the chip, these values will propagate
 928 * to the per-cpu cpuc->current_idx[] slots, see the code in
 929 * maybe_change_configuration() for details.
 930 */
 931static int sparc_check_constraints(struct perf_event **evts,
 932				   unsigned long *events, int n_ev)
 933{
 934	u8 msk0 = 0, msk1 = 0;
 935	int idx0 = 0;
 936
 937	/* This case is possible when we are invoked from
 938	 * hw_perf_group_sched_in().
 939	 */
 940	if (!n_ev)
 941		return 0;
 942
 943	if (n_ev > MAX_HWEVENTS)
 944		return -1;
 945
 
 
 
 
 
 
 
 
 946	msk0 = perf_event_get_msk(events[0]);
 947	if (n_ev == 1) {
 948		if (msk0 & PIC_LOWER)
 949			idx0 = 1;
 950		goto success;
 951	}
 952	BUG_ON(n_ev != 2);
 953	msk1 = perf_event_get_msk(events[1]);
 954
 955	/* If both events can go on any counter, OK.  */
 956	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
 957	    msk1 == (PIC_UPPER | PIC_LOWER))
 958		goto success;
 959
 960	/* If one event is limited to a specific counter,
 961	 * and the other can go on both, OK.
 962	 */
 963	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
 964	    msk1 == (PIC_UPPER | PIC_LOWER)) {
 965		if (msk0 & PIC_LOWER)
 966			idx0 = 1;
 967		goto success;
 968	}
 969
 970	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
 971	    msk0 == (PIC_UPPER | PIC_LOWER)) {
 972		if (msk1 & PIC_UPPER)
 973			idx0 = 1;
 974		goto success;
 975	}
 976
 977	/* If the events are fixed to different counters, OK.  */
 978	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
 979	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
 980		if (msk0 & PIC_LOWER)
 981			idx0 = 1;
 982		goto success;
 983	}
 984
 985	/* Otherwise, there is a conflict.  */
 986	return -1;
 987
 988success:
 989	evts[0]->hw.idx = idx0;
 990	if (n_ev == 2)
 991		evts[1]->hw.idx = idx0 ^ 1;
 992	return 0;
 993}
 994
 995static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
 996{
 997	int eu = 0, ek = 0, eh = 0;
 998	struct perf_event *event;
 999	int i, n, first;
1000
 
 
 
1001	n = n_prev + n_new;
1002	if (n <= 1)
1003		return 0;
1004
1005	first = 1;
1006	for (i = 0; i < n; i++) {
1007		event = evts[i];
1008		if (first) {
1009			eu = event->attr.exclude_user;
1010			ek = event->attr.exclude_kernel;
1011			eh = event->attr.exclude_hv;
1012			first = 0;
1013		} else if (event->attr.exclude_user != eu ||
1014			   event->attr.exclude_kernel != ek ||
1015			   event->attr.exclude_hv != eh) {
1016			return -EAGAIN;
1017		}
1018	}
1019
1020	return 0;
1021}
1022
1023static int collect_events(struct perf_event *group, int max_count,
1024			  struct perf_event *evts[], unsigned long *events,
1025			  int *current_idx)
1026{
1027	struct perf_event *event;
1028	int n = 0;
1029
1030	if (!is_software_event(group)) {
1031		if (n >= max_count)
1032			return -1;
1033		evts[n] = group;
1034		events[n] = group->hw.event_base;
1035		current_idx[n++] = PIC_NO_INDEX;
1036	}
1037	list_for_each_entry(event, &group->sibling_list, group_entry) {
1038		if (!is_software_event(event) &&
1039		    event->state != PERF_EVENT_STATE_OFF) {
1040			if (n >= max_count)
1041				return -1;
1042			evts[n] = event;
1043			events[n] = event->hw.event_base;
1044			current_idx[n++] = PIC_NO_INDEX;
1045		}
1046	}
1047	return n;
1048}
1049
1050static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1051{
1052	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1053	int n0, ret = -EAGAIN;
1054	unsigned long flags;
1055
1056	local_irq_save(flags);
1057	perf_pmu_disable(event->pmu);
1058
1059	n0 = cpuc->n_events;
1060	if (n0 >= MAX_HWEVENTS)
1061		goto out;
1062
1063	cpuc->event[n0] = event;
1064	cpuc->events[n0] = event->hw.event_base;
1065	cpuc->current_idx[n0] = PIC_NO_INDEX;
1066
1067	event->hw.state = PERF_HES_UPTODATE;
1068	if (!(ef_flags & PERF_EF_START))
1069		event->hw.state |= PERF_HES_STOPPED;
1070
1071	/*
1072	 * If group events scheduling transaction was started,
1073	 * skip the schedulability test here, it will be performed
1074	 * at commit time(->commit_txn) as a whole
1075	 */
1076	if (cpuc->group_flag & PERF_EVENT_TXN)
1077		goto nocheck;
1078
1079	if (check_excludes(cpuc->event, n0, 1))
1080		goto out;
1081	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1082		goto out;
1083
1084nocheck:
1085	cpuc->n_events++;
1086	cpuc->n_added++;
1087
1088	ret = 0;
1089out:
1090	perf_pmu_enable(event->pmu);
1091	local_irq_restore(flags);
1092	return ret;
1093}
1094
1095static int sparc_pmu_event_init(struct perf_event *event)
1096{
1097	struct perf_event_attr *attr = &event->attr;
1098	struct perf_event *evts[MAX_HWEVENTS];
1099	struct hw_perf_event *hwc = &event->hw;
1100	unsigned long events[MAX_HWEVENTS];
1101	int current_idx_dmy[MAX_HWEVENTS];
1102	const struct perf_event_map *pmap;
1103	int n;
1104
1105	if (atomic_read(&nmi_active) < 0)
1106		return -ENODEV;
1107
 
 
 
 
1108	switch (attr->type) {
1109	case PERF_TYPE_HARDWARE:
1110		if (attr->config >= sparc_pmu->max_events)
1111			return -EINVAL;
1112		pmap = sparc_pmu->event_map(attr->config);
1113		break;
1114
1115	case PERF_TYPE_HW_CACHE:
1116		pmap = sparc_map_cache_event(attr->config);
1117		if (IS_ERR(pmap))
1118			return PTR_ERR(pmap);
1119		break;
1120
1121	case PERF_TYPE_RAW:
1122		pmap = NULL;
1123		break;
1124
1125	default:
1126		return -ENOENT;
1127
1128	}
1129
1130	if (pmap) {
1131		hwc->event_base = perf_event_encode(pmap);
1132	} else {
1133		/*
1134		 * User gives us "(encoding << 16) | pic_mask" for
1135		 * PERF_TYPE_RAW events.
1136		 */
1137		hwc->event_base = attr->config;
1138	}
1139
1140	/* We save the enable bits in the config_base.  */
1141	hwc->config_base = sparc_pmu->irq_bit;
1142	if (!attr->exclude_user)
1143		hwc->config_base |= PCR_UTRACE;
1144	if (!attr->exclude_kernel)
1145		hwc->config_base |= PCR_STRACE;
1146	if (!attr->exclude_hv)
1147		hwc->config_base |= sparc_pmu->hv_bit;
1148
1149	n = 0;
1150	if (event->group_leader != event) {
1151		n = collect_events(event->group_leader,
1152				   MAX_HWEVENTS - 1,
1153				   evts, events, current_idx_dmy);
1154		if (n < 0)
1155			return -EINVAL;
1156	}
1157	events[n] = hwc->event_base;
1158	evts[n] = event;
1159
1160	if (check_excludes(evts, n, 1))
1161		return -EINVAL;
1162
1163	if (sparc_check_constraints(evts, events, n + 1))
1164		return -EINVAL;
1165
1166	hwc->idx = PIC_NO_INDEX;
1167
1168	/* Try to do all error checking before this point, as unwinding
1169	 * state after grabbing the PMC is difficult.
1170	 */
1171	perf_event_grab_pmc();
1172	event->destroy = hw_perf_event_destroy;
1173
1174	if (!hwc->sample_period) {
1175		hwc->sample_period = MAX_PERIOD;
1176		hwc->last_period = hwc->sample_period;
1177		local64_set(&hwc->period_left, hwc->sample_period);
1178	}
1179
1180	return 0;
1181}
1182
1183/*
1184 * Start group events scheduling transaction
1185 * Set the flag to make pmu::enable() not perform the
1186 * schedulability test, it will be performed at commit time
1187 */
1188static void sparc_pmu_start_txn(struct pmu *pmu)
1189{
1190	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1191
1192	perf_pmu_disable(pmu);
1193	cpuhw->group_flag |= PERF_EVENT_TXN;
1194}
1195
1196/*
1197 * Stop group events scheduling transaction
1198 * Clear the flag and pmu::enable() will perform the
1199 * schedulability test.
1200 */
1201static void sparc_pmu_cancel_txn(struct pmu *pmu)
1202{
1203	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1204
1205	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1206	perf_pmu_enable(pmu);
1207}
1208
1209/*
1210 * Commit group events scheduling transaction
1211 * Perform the group schedulability test as a whole
1212 * Return 0 if success
1213 */
1214static int sparc_pmu_commit_txn(struct pmu *pmu)
1215{
1216	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1217	int n;
1218
1219	if (!sparc_pmu)
1220		return -EINVAL;
1221
1222	cpuc = &__get_cpu_var(cpu_hw_events);
1223	n = cpuc->n_events;
1224	if (check_excludes(cpuc->event, 0, n))
1225		return -EINVAL;
1226	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1227		return -EAGAIN;
1228
1229	cpuc->group_flag &= ~PERF_EVENT_TXN;
1230	perf_pmu_enable(pmu);
1231	return 0;
1232}
1233
1234static struct pmu pmu = {
1235	.pmu_enable	= sparc_pmu_enable,
1236	.pmu_disable	= sparc_pmu_disable,
1237	.event_init	= sparc_pmu_event_init,
1238	.add		= sparc_pmu_add,
1239	.del		= sparc_pmu_del,
1240	.start		= sparc_pmu_start,
1241	.stop		= sparc_pmu_stop,
1242	.read		= sparc_pmu_read,
1243	.start_txn	= sparc_pmu_start_txn,
1244	.cancel_txn	= sparc_pmu_cancel_txn,
1245	.commit_txn	= sparc_pmu_commit_txn,
1246};
1247
1248void perf_event_print_debug(void)
1249{
1250	unsigned long flags;
1251	u64 pcr, pic;
1252	int cpu;
1253
1254	if (!sparc_pmu)
1255		return;
1256
1257	local_irq_save(flags);
1258
1259	cpu = smp_processor_id();
1260
1261	pcr = pcr_ops->read();
1262	read_pic(pic);
1263
1264	pr_info("\n");
1265	pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1266		cpu, pcr, pic);
 
 
 
 
1267
1268	local_irq_restore(flags);
1269}
1270
1271static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1272					    unsigned long cmd, void *__args)
1273{
1274	struct die_args *args = __args;
1275	struct perf_sample_data data;
1276	struct cpu_hw_events *cpuc;
1277	struct pt_regs *regs;
1278	int i;
1279
1280	if (!atomic_read(&active_events))
1281		return NOTIFY_DONE;
1282
1283	switch (cmd) {
1284	case DIE_NMI:
1285		break;
1286
1287	default:
1288		return NOTIFY_DONE;
1289	}
1290
1291	regs = args->regs;
1292
1293	perf_sample_data_init(&data, 0);
1294
1295	cpuc = &__get_cpu_var(cpu_hw_events);
1296
1297	/* If the PMU has the TOE IRQ enable bits, we need to do a
1298	 * dummy write to the %pcr to clear the overflow bits and thus
1299	 * the interrupt.
1300	 *
1301	 * Do this before we peek at the counters to determine
1302	 * overflow so we don't lose any events.
1303	 */
1304	if (sparc_pmu->irq_bit)
1305		pcr_ops->write(cpuc->pcr);
 
1306
1307	for (i = 0; i < cpuc->n_events; i++) {
1308		struct perf_event *event = cpuc->event[i];
1309		int idx = cpuc->current_idx[i];
1310		struct hw_perf_event *hwc;
1311		u64 val;
1312
 
 
 
 
1313		hwc = &event->hw;
1314		val = sparc_perf_event_update(event, hwc, idx);
1315		if (val & (1ULL << 31))
1316			continue;
1317
1318		data.period = event->hw.last_period;
1319		if (!sparc_perf_event_set_period(event, hwc, idx))
1320			continue;
1321
1322		if (perf_event_overflow(event, &data, regs))
1323			sparc_pmu_stop(event, 0);
1324	}
1325
1326	return NOTIFY_STOP;
1327}
1328
1329static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1330	.notifier_call		= perf_event_nmi_handler,
1331};
1332
1333static bool __init supported_pmu(void)
1334{
1335	if (!strcmp(sparc_pmu_type, "ultra3") ||
1336	    !strcmp(sparc_pmu_type, "ultra3+") ||
1337	    !strcmp(sparc_pmu_type, "ultra3i") ||
1338	    !strcmp(sparc_pmu_type, "ultra4+")) {
1339		sparc_pmu = &ultra3_pmu;
1340		return true;
1341	}
1342	if (!strcmp(sparc_pmu_type, "niagara")) {
1343		sparc_pmu = &niagara1_pmu;
1344		return true;
1345	}
1346	if (!strcmp(sparc_pmu_type, "niagara2") ||
1347	    !strcmp(sparc_pmu_type, "niagara3")) {
1348		sparc_pmu = &niagara2_pmu;
1349		return true;
1350	}
 
 
 
 
1351	return false;
1352}
1353
1354int __init init_hw_perf_events(void)
1355{
1356	pr_info("Performance events: ");
1357
1358	if (!supported_pmu()) {
1359		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1360		return 0;
1361	}
1362
1363	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1364
1365	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1366	register_die_notifier(&perf_event_nmi_notifier);
1367
1368	return 0;
1369}
1370early_initcall(init_hw_perf_events);
1371
1372void perf_callchain_kernel(struct perf_callchain_entry *entry,
1373			   struct pt_regs *regs)
1374{
1375	unsigned long ksp, fp;
1376#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1377	int graph = 0;
1378#endif
1379
1380	stack_trace_flush();
1381
1382	perf_callchain_store(entry, regs->tpc);
1383
1384	ksp = regs->u_regs[UREG_I6];
1385	fp = ksp + STACK_BIAS;
1386	do {
1387		struct sparc_stackf *sf;
1388		struct pt_regs *regs;
1389		unsigned long pc;
1390
1391		if (!kstack_valid(current_thread_info(), fp))
1392			break;
1393
1394		sf = (struct sparc_stackf *) fp;
1395		regs = (struct pt_regs *) (sf + 1);
1396
1397		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1398			if (user_mode(regs))
1399				break;
1400			pc = regs->tpc;
1401			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1402		} else {
1403			pc = sf->callers_pc;
1404			fp = (unsigned long)sf->fp + STACK_BIAS;
1405		}
1406		perf_callchain_store(entry, pc);
1407#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1408		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1409			int index = current->curr_ret_stack;
1410			if (current->ret_stack && index >= graph) {
1411				pc = current->ret_stack[index - graph].ret;
1412				perf_callchain_store(entry, pc);
1413				graph++;
1414			}
1415		}
1416#endif
1417	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1418}
1419
1420static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1421				   struct pt_regs *regs)
1422{
1423	unsigned long ufp;
1424
1425	perf_callchain_store(entry, regs->tpc);
1426
1427	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1428	do {
1429		struct sparc_stackf *usf, sf;
1430		unsigned long pc;
1431
1432		usf = (struct sparc_stackf *) ufp;
1433		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1434			break;
1435
1436		pc = sf.callers_pc;
1437		ufp = (unsigned long)sf.fp + STACK_BIAS;
1438		perf_callchain_store(entry, pc);
1439	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1440}
1441
1442static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1443				   struct pt_regs *regs)
1444{
1445	unsigned long ufp;
1446
1447	perf_callchain_store(entry, regs->tpc);
1448
1449	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1450	do {
1451		struct sparc_stackf32 *usf, sf;
1452		unsigned long pc;
1453
1454		usf = (struct sparc_stackf32 *) ufp;
1455		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1456			break;
1457
1458		pc = sf.callers_pc;
1459		ufp = (unsigned long)sf.fp;
 
 
 
 
 
 
 
 
 
 
 
 
1460		perf_callchain_store(entry, pc);
1461	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1462}
1463
1464void
1465perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1466{
 
 
 
 
 
1467	flushw_user();
1468	if (test_thread_flag(TIF_32BIT))
1469		perf_callchain_user_32(entry, regs);
1470	else
1471		perf_callchain_user_64(entry, regs);
1472}
v3.15
   1/* Performance event support for sparc64.
   2 *
   3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
   4 *
   5 * This code is based almost entirely upon the x86 perf event
   6 * code, which is:
   7 *
   8 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   9 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  10 *  Copyright (C) 2009 Jaswinder Singh Rajput
  11 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  12 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/kprobes.h>
  17#include <linux/ftrace.h>
  18#include <linux/kernel.h>
  19#include <linux/kdebug.h>
  20#include <linux/mutex.h>
  21
  22#include <asm/stacktrace.h>
  23#include <asm/cpudata.h>
  24#include <asm/uaccess.h>
  25#include <linux/atomic.h>
  26#include <asm/nmi.h>
  27#include <asm/pcr.h>
  28#include <asm/cacheflush.h>
  29
  30#include "kernel.h"
  31#include "kstack.h"
  32
  33/* Two classes of sparc64 chips currently exist.  All of which have
  34 * 32-bit counters which can generate overflow interrupts on the
  35 * transition from 0xffffffff to 0.
  36 *
  37 * All chips upto and including SPARC-T3 have two performance
  38 * counters.  The two 32-bit counters are accessed in one go using a
  39 * single 64-bit register.
 
 
  40 *
  41 * On these older chips both counters are controlled using a single
  42 * control register.  The only way to stop all sampling is to clear
  43 * all of the context (user, supervisor, hypervisor) sampling enable
  44 * bits.  But these bits apply to both counters, thus the two counters
  45 * can't be enabled/disabled individually.
  46 *
  47 * Furthermore, the control register on these older chips have two
  48 * event fields, one for each of the two counters.  It's thus nearly
  49 * impossible to have one counter going while keeping the other one
  50 * stopped.  Therefore it is possible to get overflow interrupts for
  51 * counters not currently "in use" and that condition must be checked
  52 * in the overflow interrupt handler.
  53 *
  54 * So we use a hack, in that we program inactive counters with the
  55 * "sw_count0" and "sw_count1" events.  These count how many times
  56 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
  57 * unusual way to encode a NOP and therefore will not trigger in
  58 * normal code.
  59 *
  60 * Starting with SPARC-T4 we have one control register per counter.
  61 * And the counters are stored in individual registers.  The registers
  62 * for the counters are 64-bit but only a 32-bit counter is
  63 * implemented.  The event selections on SPARC-T4 lack any
  64 * restrictions, therefore we can elide all of the complicated
  65 * conflict resolution code we have for SPARC-T3 and earlier chips.
  66 */
  67
  68#define MAX_HWEVENTS			4
  69#define MAX_PCRS			4
  70#define MAX_PERIOD			((1UL << 32) - 1)
  71
  72#define PIC_UPPER_INDEX			0
  73#define PIC_LOWER_INDEX			1
  74#define PIC_NO_INDEX			-1
  75
  76struct cpu_hw_events {
  77	/* Number of events currently scheduled onto this cpu.
  78	 * This tells how many entries in the arrays below
  79	 * are valid.
  80	 */
  81	int			n_events;
  82
  83	/* Number of new events added since the last hw_perf_disable().
  84	 * This works because the perf event layer always adds new
  85	 * events inside of a perf_{disable,enable}() sequence.
  86	 */
  87	int			n_added;
  88
  89	/* Array of events current scheduled on this cpu.  */
  90	struct perf_event	*event[MAX_HWEVENTS];
  91
  92	/* Array of encoded longs, specifying the %pcr register
  93	 * encoding and the mask of PIC counters this even can
  94	 * be scheduled on.  See perf_event_encode() et al.
  95	 */
  96	unsigned long		events[MAX_HWEVENTS];
  97
  98	/* The current counter index assigned to an event.  When the
  99	 * event hasn't been programmed into the cpu yet, this will
 100	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
 101	 * we ought to schedule the event.
 102	 */
 103	int			current_idx[MAX_HWEVENTS];
 104
 105	/* Software copy of %pcr register(s) on this cpu.  */
 106	u64			pcr[MAX_HWEVENTS];
 107
 108	/* Enabled/disable state.  */
 109	int			enabled;
 110
 111	unsigned int		group_flag;
 112};
 113DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
 114
 115/* An event map describes the characteristics of a performance
 116 * counter event.  In particular it gives the encoding as well as
 117 * a mask telling which counters the event can be measured on.
 118 *
 119 * The mask is unused on SPARC-T4 and later.
 120 */
 121struct perf_event_map {
 122	u16	encoding;
 123	u8	pic_mask;
 124#define PIC_NONE	0x00
 125#define PIC_UPPER	0x01
 126#define PIC_LOWER	0x02
 127};
 128
 129/* Encode a perf_event_map entry into a long.  */
 130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
 131{
 132	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
 133}
 134
 135static u8 perf_event_get_msk(unsigned long val)
 136{
 137	return val & 0xff;
 138}
 139
 140static u64 perf_event_get_enc(unsigned long val)
 141{
 142	return val >> 16;
 143}
 144
 145#define C(x) PERF_COUNT_HW_CACHE_##x
 146
 147#define CACHE_OP_UNSUPPORTED	0xfffe
 148#define CACHE_OP_NONSENSE	0xffff
 149
 150typedef struct perf_event_map cache_map_t
 151				[PERF_COUNT_HW_CACHE_MAX]
 152				[PERF_COUNT_HW_CACHE_OP_MAX]
 153				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 154
 155struct sparc_pmu {
 156	const struct perf_event_map	*(*event_map)(int);
 157	const cache_map_t		*cache_map;
 158	int				max_events;
 159	u32				(*read_pmc)(int);
 160	void				(*write_pmc)(int, u64);
 161	int				upper_shift;
 162	int				lower_shift;
 163	int				event_mask;
 164	int				user_bit;
 165	int				priv_bit;
 166	int				hv_bit;
 167	int				irq_bit;
 168	int				upper_nop;
 169	int				lower_nop;
 170	unsigned int			flags;
 171#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
 172#define SPARC_PMU_HAS_CONFLICTS		0x00000002
 173	int				max_hw_events;
 174	int				num_pcrs;
 175	int				num_pic_regs;
 176};
 177
 178static u32 sparc_default_read_pmc(int idx)
 179{
 180	u64 val;
 181
 182	val = pcr_ops->read_pic(0);
 183	if (idx == PIC_UPPER_INDEX)
 184		val >>= 32;
 185
 186	return val & 0xffffffff;
 187}
 188
 189static void sparc_default_write_pmc(int idx, u64 val)
 190{
 191	u64 shift, mask, pic;
 192
 193	shift = 0;
 194	if (idx == PIC_UPPER_INDEX)
 195		shift = 32;
 196
 197	mask = ((u64) 0xffffffff) << shift;
 198	val <<= shift;
 199
 200	pic = pcr_ops->read_pic(0);
 201	pic &= ~mask;
 202	pic |= val;
 203	pcr_ops->write_pic(0, pic);
 204}
 205
 206static const struct perf_event_map ultra3_perfmon_event_map[] = {
 207	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
 208	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
 209	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
 210	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
 211};
 212
 213static const struct perf_event_map *ultra3_event_map(int event_id)
 214{
 215	return &ultra3_perfmon_event_map[event_id];
 216}
 217
 218static const cache_map_t ultra3_cache_map = {
 219[C(L1D)] = {
 220	[C(OP_READ)] = {
 221		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 222		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 223	},
 224	[C(OP_WRITE)] = {
 225		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
 226		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
 227	},
 228	[C(OP_PREFETCH)] = {
 229		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 230		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 231	},
 232},
 233[C(L1I)] = {
 234	[C(OP_READ)] = {
 235		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
 236		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
 237	},
 238	[ C(OP_WRITE) ] = {
 239		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 240		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 241	},
 242	[ C(OP_PREFETCH) ] = {
 243		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 244		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 245	},
 246},
 247[C(LL)] = {
 248	[C(OP_READ)] = {
 249		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
 250		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
 251	},
 252	[C(OP_WRITE)] = {
 253		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
 254		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
 255	},
 256	[C(OP_PREFETCH)] = {
 257		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 258		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 259	},
 260},
 261[C(DTLB)] = {
 262	[C(OP_READ)] = {
 263		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 264		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
 265	},
 266	[ C(OP_WRITE) ] = {
 267		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 268		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 269	},
 270	[ C(OP_PREFETCH) ] = {
 271		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 272		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 273	},
 274},
 275[C(ITLB)] = {
 276	[C(OP_READ)] = {
 277		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 278		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
 279	},
 280	[ C(OP_WRITE) ] = {
 281		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 282		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 283	},
 284	[ C(OP_PREFETCH) ] = {
 285		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 286		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 287	},
 288},
 289[C(BPU)] = {
 290	[C(OP_READ)] = {
 291		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 292		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 293	},
 294	[ C(OP_WRITE) ] = {
 295		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 296		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 297	},
 298	[ C(OP_PREFETCH) ] = {
 299		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 300		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 301	},
 302},
 303[C(NODE)] = {
 304	[C(OP_READ)] = {
 305		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 306		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 307	},
 308	[ C(OP_WRITE) ] = {
 309		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 310		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 311	},
 312	[ C(OP_PREFETCH) ] = {
 313		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 314		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 315	},
 316},
 317};
 318
 319static const struct sparc_pmu ultra3_pmu = {
 320	.event_map	= ultra3_event_map,
 321	.cache_map	= &ultra3_cache_map,
 322	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
 323	.read_pmc	= sparc_default_read_pmc,
 324	.write_pmc	= sparc_default_write_pmc,
 325	.upper_shift	= 11,
 326	.lower_shift	= 4,
 327	.event_mask	= 0x3f,
 328	.user_bit	= PCR_UTRACE,
 329	.priv_bit	= PCR_STRACE,
 330	.upper_nop	= 0x1c,
 331	.lower_nop	= 0x14,
 332	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 333			   SPARC_PMU_HAS_CONFLICTS),
 334	.max_hw_events	= 2,
 335	.num_pcrs	= 1,
 336	.num_pic_regs	= 1,
 337};
 338
 339/* Niagara1 is very limited.  The upper PIC is hard-locked to count
 340 * only instructions, so it is free running which creates all kinds of
 341 * problems.  Some hardware designs make one wonder if the creator
 342 * even looked at how this stuff gets used by software.
 343 */
 344static const struct perf_event_map niagara1_perfmon_event_map[] = {
 345	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
 346	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
 347	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
 348	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
 349};
 350
 351static const struct perf_event_map *niagara1_event_map(int event_id)
 352{
 353	return &niagara1_perfmon_event_map[event_id];
 354}
 355
 356static const cache_map_t niagara1_cache_map = {
 357[C(L1D)] = {
 358	[C(OP_READ)] = {
 359		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 360		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 361	},
 362	[C(OP_WRITE)] = {
 363		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 364		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
 365	},
 366	[C(OP_PREFETCH)] = {
 367		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 368		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 369	},
 370},
 371[C(L1I)] = {
 372	[C(OP_READ)] = {
 373		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
 374		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
 375	},
 376	[ C(OP_WRITE) ] = {
 377		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 378		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 379	},
 380	[ C(OP_PREFETCH) ] = {
 381		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 382		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 383	},
 384},
 385[C(LL)] = {
 386	[C(OP_READ)] = {
 387		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 388		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 389	},
 390	[C(OP_WRITE)] = {
 391		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 392		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
 393	},
 394	[C(OP_PREFETCH)] = {
 395		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 396		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 397	},
 398},
 399[C(DTLB)] = {
 400	[C(OP_READ)] = {
 401		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 402		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
 403	},
 404	[ C(OP_WRITE) ] = {
 405		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 406		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 407	},
 408	[ C(OP_PREFETCH) ] = {
 409		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 410		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 411	},
 412},
 413[C(ITLB)] = {
 414	[C(OP_READ)] = {
 415		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 416		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
 417	},
 418	[ C(OP_WRITE) ] = {
 419		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 420		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 421	},
 422	[ C(OP_PREFETCH) ] = {
 423		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 424		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 425	},
 426},
 427[C(BPU)] = {
 428	[C(OP_READ)] = {
 429		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 430		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 431	},
 432	[ C(OP_WRITE) ] = {
 433		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 434		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 435	},
 436	[ C(OP_PREFETCH) ] = {
 437		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 438		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 439	},
 440},
 441[C(NODE)] = {
 442	[C(OP_READ)] = {
 443		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 444		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 445	},
 446	[ C(OP_WRITE) ] = {
 447		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 448		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 449	},
 450	[ C(OP_PREFETCH) ] = {
 451		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 452		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 453	},
 454},
 455};
 456
 457static const struct sparc_pmu niagara1_pmu = {
 458	.event_map	= niagara1_event_map,
 459	.cache_map	= &niagara1_cache_map,
 460	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
 461	.read_pmc	= sparc_default_read_pmc,
 462	.write_pmc	= sparc_default_write_pmc,
 463	.upper_shift	= 0,
 464	.lower_shift	= 4,
 465	.event_mask	= 0x7,
 466	.user_bit	= PCR_UTRACE,
 467	.priv_bit	= PCR_STRACE,
 468	.upper_nop	= 0x0,
 469	.lower_nop	= 0x0,
 470	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 471			   SPARC_PMU_HAS_CONFLICTS),
 472	.max_hw_events	= 2,
 473	.num_pcrs	= 1,
 474	.num_pic_regs	= 1,
 475};
 476
 477static const struct perf_event_map niagara2_perfmon_event_map[] = {
 478	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 479	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
 480	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
 481	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
 482	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
 483	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
 484};
 485
 486static const struct perf_event_map *niagara2_event_map(int event_id)
 487{
 488	return &niagara2_perfmon_event_map[event_id];
 489}
 490
 491static const cache_map_t niagara2_cache_map = {
 492[C(L1D)] = {
 493	[C(OP_READ)] = {
 494		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 495		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 496	},
 497	[C(OP_WRITE)] = {
 498		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 499		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
 500	},
 501	[C(OP_PREFETCH)] = {
 502		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 503		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 504	},
 505},
 506[C(L1I)] = {
 507	[C(OP_READ)] = {
 508		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
 509		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
 510	},
 511	[ C(OP_WRITE) ] = {
 512		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 513		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 514	},
 515	[ C(OP_PREFETCH) ] = {
 516		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 517		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 518	},
 519},
 520[C(LL)] = {
 521	[C(OP_READ)] = {
 522		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
 523		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
 524	},
 525	[C(OP_WRITE)] = {
 526		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
 527		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
 528	},
 529	[C(OP_PREFETCH)] = {
 530		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 531		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 532	},
 533},
 534[C(DTLB)] = {
 535	[C(OP_READ)] = {
 536		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 537		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
 538	},
 539	[ C(OP_WRITE) ] = {
 540		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 541		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 542	},
 543	[ C(OP_PREFETCH) ] = {
 544		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 545		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 546	},
 547},
 548[C(ITLB)] = {
 549	[C(OP_READ)] = {
 550		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 551		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
 552	},
 553	[ C(OP_WRITE) ] = {
 554		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 555		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 556	},
 557	[ C(OP_PREFETCH) ] = {
 558		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 559		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 560	},
 561},
 562[C(BPU)] = {
 563	[C(OP_READ)] = {
 564		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 565		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 566	},
 567	[ C(OP_WRITE) ] = {
 568		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 569		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 570	},
 571	[ C(OP_PREFETCH) ] = {
 572		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 573		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 574	},
 575},
 576[C(NODE)] = {
 577	[C(OP_READ)] = {
 578		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 579		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 580	},
 581	[ C(OP_WRITE) ] = {
 582		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 583		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 584	},
 585	[ C(OP_PREFETCH) ] = {
 586		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 587		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 588	},
 589},
 590};
 591
 592static const struct sparc_pmu niagara2_pmu = {
 593	.event_map	= niagara2_event_map,
 594	.cache_map	= &niagara2_cache_map,
 595	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
 596	.read_pmc	= sparc_default_read_pmc,
 597	.write_pmc	= sparc_default_write_pmc,
 598	.upper_shift	= 19,
 599	.lower_shift	= 6,
 600	.event_mask	= 0xfff,
 601	.user_bit	= PCR_UTRACE,
 602	.priv_bit	= PCR_STRACE,
 603	.hv_bit		= PCR_N2_HTRACE,
 604	.irq_bit	= 0x30,
 605	.upper_nop	= 0x220,
 606	.lower_nop	= 0x220,
 607	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
 608			   SPARC_PMU_HAS_CONFLICTS),
 609	.max_hw_events	= 2,
 610	.num_pcrs	= 1,
 611	.num_pic_regs	= 1,
 612};
 613
 614static const struct perf_event_map niagara4_perfmon_event_map[] = {
 615	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
 616	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
 617	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
 618	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
 619	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
 620	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
 621};
 622
 623static const struct perf_event_map *niagara4_event_map(int event_id)
 624{
 625	return &niagara4_perfmon_event_map[event_id];
 626}
 627
 628static const cache_map_t niagara4_cache_map = {
 629[C(L1D)] = {
 630	[C(OP_READ)] = {
 631		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 632		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 633	},
 634	[C(OP_WRITE)] = {
 635		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 636		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
 637	},
 638	[C(OP_PREFETCH)] = {
 639		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 640		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 641	},
 642},
 643[C(L1I)] = {
 644	[C(OP_READ)] = {
 645		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
 646		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
 647	},
 648	[ C(OP_WRITE) ] = {
 649		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
 650		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
 651	},
 652	[ C(OP_PREFETCH) ] = {
 653		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 654		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 655	},
 656},
 657[C(LL)] = {
 658	[C(OP_READ)] = {
 659		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
 660		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 661	},
 662	[C(OP_WRITE)] = {
 663		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
 664		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 665	},
 666	[C(OP_PREFETCH)] = {
 667		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 668		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 669	},
 670},
 671[C(DTLB)] = {
 672	[C(OP_READ)] = {
 673		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 674		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
 675	},
 676	[ C(OP_WRITE) ] = {
 677		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 678		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 679	},
 680	[ C(OP_PREFETCH) ] = {
 681		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 682		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 683	},
 684},
 685[C(ITLB)] = {
 686	[C(OP_READ)] = {
 687		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 688		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
 689	},
 690	[ C(OP_WRITE) ] = {
 691		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 692		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 693	},
 694	[ C(OP_PREFETCH) ] = {
 695		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 696		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 697	},
 698},
 699[C(BPU)] = {
 700	[C(OP_READ)] = {
 701		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 702		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
 703	},
 704	[ C(OP_WRITE) ] = {
 705		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 706		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 707	},
 708	[ C(OP_PREFETCH) ] = {
 709		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 710		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 711	},
 712},
 713[C(NODE)] = {
 714	[C(OP_READ)] = {
 715		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
 716		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
 717	},
 718	[ C(OP_WRITE) ] = {
 719		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 720		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 721	},
 722	[ C(OP_PREFETCH) ] = {
 723		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
 724		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
 725	},
 726},
 727};
 728
 729static u32 sparc_vt_read_pmc(int idx)
 730{
 731	u64 val = pcr_ops->read_pic(idx);
 732
 733	return val & 0xffffffff;
 734}
 735
 736static void sparc_vt_write_pmc(int idx, u64 val)
 737{
 738	u64 pcr;
 739
 740	/* There seems to be an internal latch on the overflow event
 741	 * on SPARC-T4 that prevents it from triggering unless you
 742	 * update the PIC exactly as we do here.  The requirement
 743	 * seems to be that you have to turn off event counting in the
 744	 * PCR around the PIC update.
 745	 *
 746	 * For example, after the following sequence:
 747	 *
 748	 * 1) set PIC to -1
 749	 * 2) enable event counting and overflow reporting in PCR
 750	 * 3) overflow triggers, softint 15 handler invoked
 751	 * 4) clear OV bit in PCR
 752	 * 5) write PIC to -1
 753	 *
 754	 * a subsequent overflow event will not trigger.  This
 755	 * sequence works on SPARC-T3 and previous chips.
 756	 */
 757	pcr = pcr_ops->read_pcr(idx);
 758	pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
 759
 760	pcr_ops->write_pic(idx, val & 0xffffffff);
 761
 762	pcr_ops->write_pcr(idx, pcr);
 763}
 764
 765static const struct sparc_pmu niagara4_pmu = {
 766	.event_map	= niagara4_event_map,
 767	.cache_map	= &niagara4_cache_map,
 768	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
 769	.read_pmc	= sparc_vt_read_pmc,
 770	.write_pmc	= sparc_vt_write_pmc,
 771	.upper_shift	= 5,
 772	.lower_shift	= 5,
 773	.event_mask	= 0x7ff,
 774	.user_bit	= PCR_N4_UTRACE,
 775	.priv_bit	= PCR_N4_STRACE,
 776
 777	/* We explicitly don't support hypervisor tracing.  The T4
 778	 * generates the overflow event for precise events via a trap
 779	 * which will not be generated (ie. it's completely lost) if
 780	 * we happen to be in the hypervisor when the event triggers.
 781	 * Essentially, the overflow event reporting is completely
 782	 * unusable when you have hypervisor mode tracing enabled.
 783	 */
 784	.hv_bit		= 0,
 785
 786	.irq_bit	= PCR_N4_TOE,
 787	.upper_nop	= 0,
 788	.lower_nop	= 0,
 789	.flags		= 0,
 790	.max_hw_events	= 4,
 791	.num_pcrs	= 4,
 792	.num_pic_regs	= 4,
 793};
 794
 795static const struct sparc_pmu *sparc_pmu __read_mostly;
 796
 797static u64 event_encoding(u64 event_id, int idx)
 798{
 799	if (idx == PIC_UPPER_INDEX)
 800		event_id <<= sparc_pmu->upper_shift;
 801	else
 802		event_id <<= sparc_pmu->lower_shift;
 803	return event_id;
 804}
 805
 806static u64 mask_for_index(int idx)
 807{
 808	return event_encoding(sparc_pmu->event_mask, idx);
 809}
 810
 811static u64 nop_for_index(int idx)
 812{
 813	return event_encoding(idx == PIC_UPPER_INDEX ?
 814			      sparc_pmu->upper_nop :
 815			      sparc_pmu->lower_nop, idx);
 816}
 817
 818static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 819{
 820	u64 enc, val, mask = mask_for_index(idx);
 821	int pcr_index = 0;
 822
 823	if (sparc_pmu->num_pcrs > 1)
 824		pcr_index = idx;
 825
 826	enc = perf_event_get_enc(cpuc->events[idx]);
 827
 828	val = cpuc->pcr[pcr_index];
 829	val &= ~mask;
 830	val |= event_encoding(enc, idx);
 831	cpuc->pcr[pcr_index] = val;
 832
 833	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 834}
 835
 836static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
 837{
 838	u64 mask = mask_for_index(idx);
 839	u64 nop = nop_for_index(idx);
 840	int pcr_index = 0;
 841	u64 val;
 842
 843	if (sparc_pmu->num_pcrs > 1)
 844		pcr_index = idx;
 845
 846	val = cpuc->pcr[pcr_index];
 847	val &= ~mask;
 848	val |= nop;
 849	cpuc->pcr[pcr_index] = val;
 
 
 
 
 
 
 
 
 
 
 
 850
 851	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852}
 853
 854static u64 sparc_perf_event_update(struct perf_event *event,
 855				   struct hw_perf_event *hwc, int idx)
 856{
 857	int shift = 64 - 32;
 858	u64 prev_raw_count, new_raw_count;
 859	s64 delta;
 860
 861again:
 862	prev_raw_count = local64_read(&hwc->prev_count);
 863	new_raw_count = sparc_pmu->read_pmc(idx);
 864
 865	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 866			     new_raw_count) != prev_raw_count)
 867		goto again;
 868
 869	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 870	delta >>= shift;
 871
 872	local64_add(delta, &event->count);
 873	local64_sub(delta, &hwc->period_left);
 874
 875	return new_raw_count;
 876}
 877
 878static int sparc_perf_event_set_period(struct perf_event *event,
 879				       struct hw_perf_event *hwc, int idx)
 880{
 881	s64 left = local64_read(&hwc->period_left);
 882	s64 period = hwc->sample_period;
 883	int ret = 0;
 884
 885	if (unlikely(left <= -period)) {
 886		left = period;
 887		local64_set(&hwc->period_left, left);
 888		hwc->last_period = period;
 889		ret = 1;
 890	}
 891
 892	if (unlikely(left <= 0)) {
 893		left += period;
 894		local64_set(&hwc->period_left, left);
 895		hwc->last_period = period;
 896		ret = 1;
 897	}
 898	if (left > MAX_PERIOD)
 899		left = MAX_PERIOD;
 900
 901	local64_set(&hwc->prev_count, (u64)-left);
 902
 903	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
 904
 905	perf_event_update_userpage(event);
 906
 907	return ret;
 908}
 909
 910static void read_in_all_counters(struct cpu_hw_events *cpuc)
 
 
 
 
 911{
 912	int i;
 913
 
 
 
 
 914	for (i = 0; i < cpuc->n_events; i++) {
 915		struct perf_event *cp = cpuc->event[i];
 916
 917		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
 918		    cpuc->current_idx[i] != cp->hw.idx) {
 919			sparc_perf_event_update(cp, &cp->hw,
 920						cpuc->current_idx[i]);
 921			cpuc->current_idx[i] = PIC_NO_INDEX;
 922		}
 923	}
 924}
 925
 926/* On this PMU all PICs are programmed using a single PCR.  Calculate
 927 * the combined control register value.
 928 *
 929 * For such chips we require that all of the events have the same
 930 * configuration, so just fetch the settings from the first entry.
 931 */
 932static void calculate_single_pcr(struct cpu_hw_events *cpuc)
 933{
 934	int i;
 935
 936	if (!cpuc->n_added)
 937		goto out;
 938
 939	/* Assign to counters all unassigned events.  */
 940	for (i = 0; i < cpuc->n_events; i++) {
 941		struct perf_event *cp = cpuc->event[i];
 942		struct hw_perf_event *hwc = &cp->hw;
 943		int idx = hwc->idx;
 944		u64 enc;
 945
 946		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 947			continue;
 948
 949		sparc_perf_event_set_period(cp, hwc, idx);
 950		cpuc->current_idx[i] = idx;
 951
 952		enc = perf_event_get_enc(cpuc->events[i]);
 953		cpuc->pcr[0] &= ~mask_for_index(idx);
 954		if (hwc->state & PERF_HES_STOPPED)
 955			cpuc->pcr[0] |= nop_for_index(idx);
 956		else
 957			cpuc->pcr[0] |= event_encoding(enc, idx);
 958	}
 959out:
 960	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
 961}
 962
 963/* On this PMU each PIC has it's own PCR control register.  */
 964static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
 965{
 966	int i;
 967
 968	if (!cpuc->n_added)
 969		goto out;
 970
 971	for (i = 0; i < cpuc->n_events; i++) {
 972		struct perf_event *cp = cpuc->event[i];
 973		struct hw_perf_event *hwc = &cp->hw;
 974		int idx = hwc->idx;
 975		u64 enc;
 976
 977		if (cpuc->current_idx[i] != PIC_NO_INDEX)
 978			continue;
 979
 980		sparc_perf_event_set_period(cp, hwc, idx);
 981		cpuc->current_idx[i] = idx;
 982
 983		enc = perf_event_get_enc(cpuc->events[i]);
 984		cpuc->pcr[idx] &= ~mask_for_index(idx);
 985		if (hwc->state & PERF_HES_STOPPED)
 986			cpuc->pcr[idx] |= nop_for_index(idx);
 987		else
 988			cpuc->pcr[idx] |= event_encoding(enc, idx);
 989	}
 990out:
 991	for (i = 0; i < cpuc->n_events; i++) {
 992		struct perf_event *cp = cpuc->event[i];
 993		int idx = cp->hw.idx;
 994
 995		cpuc->pcr[idx] |= cp->hw.config_base;
 996	}
 997}
 998
 999/* If performance event entries have been added, move existing events
1000 * around (if necessary) and then assign new entries to counters.
1001 */
1002static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003{
1004	if (cpuc->n_added)
1005		read_in_all_counters(cpuc);
1006
1007	if (sparc_pmu->num_pcrs == 1) {
1008		calculate_single_pcr(cpuc);
1009	} else {
1010		calculate_multiple_pcrs(cpuc);
1011	}
1012}
1013
1014static void sparc_pmu_enable(struct pmu *pmu)
1015{
1016	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1017	int i;
1018
1019	if (cpuc->enabled)
1020		return;
1021
1022	cpuc->enabled = 1;
1023	barrier();
1024
1025	if (cpuc->n_events)
1026		update_pcrs_for_enable(cpuc);
 
 
 
 
 
 
 
 
 
 
1027
1028	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1029		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030}
1031
1032static void sparc_pmu_disable(struct pmu *pmu)
1033{
1034	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035	int i;
1036
1037	if (!cpuc->enabled)
1038		return;
1039
1040	cpuc->enabled = 0;
1041	cpuc->n_added = 0;
1042
1043	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1044		u64 val = cpuc->pcr[i];
 
 
1045
1046		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1047			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1048		cpuc->pcr[i] = val;
1049		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1050	}
1051}
1052
1053static int active_event_index(struct cpu_hw_events *cpuc,
1054			      struct perf_event *event)
1055{
1056	int i;
1057
1058	for (i = 0; i < cpuc->n_events; i++) {
1059		if (cpuc->event[i] == event)
1060			break;
1061	}
1062	BUG_ON(i == cpuc->n_events);
1063	return cpuc->current_idx[i];
1064}
1065
1066static void sparc_pmu_start(struct perf_event *event, int flags)
1067{
1068	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1069	int idx = active_event_index(cpuc, event);
1070
1071	if (flags & PERF_EF_RELOAD) {
1072		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1073		sparc_perf_event_set_period(event, &event->hw, idx);
1074	}
1075
1076	event->hw.state = 0;
1077
1078	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1079}
1080
1081static void sparc_pmu_stop(struct perf_event *event, int flags)
1082{
1083	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1084	int idx = active_event_index(cpuc, event);
1085
1086	if (!(event->hw.state & PERF_HES_STOPPED)) {
1087		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1088		event->hw.state |= PERF_HES_STOPPED;
1089	}
1090
1091	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1092		sparc_perf_event_update(event, &event->hw, idx);
1093		event->hw.state |= PERF_HES_UPTODATE;
1094	}
1095}
1096
1097static void sparc_pmu_del(struct perf_event *event, int _flags)
1098{
1099	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100	unsigned long flags;
1101	int i;
1102
1103	local_irq_save(flags);
1104	perf_pmu_disable(event->pmu);
1105
1106	for (i = 0; i < cpuc->n_events; i++) {
1107		if (event == cpuc->event[i]) {
1108			/* Absorb the final count and turn off the
1109			 * event.
1110			 */
1111			sparc_pmu_stop(event, PERF_EF_UPDATE);
1112
1113			/* Shift remaining entries down into
1114			 * the existing slot.
1115			 */
1116			while (++i < cpuc->n_events) {
1117				cpuc->event[i - 1] = cpuc->event[i];
1118				cpuc->events[i - 1] = cpuc->events[i];
1119				cpuc->current_idx[i - 1] =
1120					cpuc->current_idx[i];
1121			}
1122
1123			perf_event_update_userpage(event);
1124
1125			cpuc->n_events--;
1126			break;
1127		}
1128	}
1129
1130	perf_pmu_enable(event->pmu);
1131	local_irq_restore(flags);
1132}
1133
1134static void sparc_pmu_read(struct perf_event *event)
1135{
1136	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1137	int idx = active_event_index(cpuc, event);
1138	struct hw_perf_event *hwc = &event->hw;
1139
1140	sparc_perf_event_update(event, hwc, idx);
1141}
1142
1143static atomic_t active_events = ATOMIC_INIT(0);
1144static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146static void perf_stop_nmi_watchdog(void *unused)
1147{
1148	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149	int i;
1150
1151	stop_nmi_watchdog(NULL);
1152	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154}
1155
1156void perf_event_grab_pmc(void)
1157{
1158	if (atomic_inc_not_zero(&active_events))
1159		return;
1160
1161	mutex_lock(&pmc_grab_mutex);
1162	if (atomic_read(&active_events) == 0) {
1163		if (atomic_read(&nmi_active) > 0) {
1164			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165			BUG_ON(atomic_read(&nmi_active) != 0);
1166		}
1167		atomic_inc(&active_events);
1168	}
1169	mutex_unlock(&pmc_grab_mutex);
1170}
1171
1172void perf_event_release_pmc(void)
1173{
1174	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175		if (atomic_read(&nmi_active) == 0)
1176			on_each_cpu(start_nmi_watchdog, NULL, 1);
1177		mutex_unlock(&pmc_grab_mutex);
1178	}
1179}
1180
1181static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182{
1183	unsigned int cache_type, cache_op, cache_result;
1184	const struct perf_event_map *pmap;
1185
1186	if (!sparc_pmu->cache_map)
1187		return ERR_PTR(-ENOENT);
1188
1189	cache_type = (config >>  0) & 0xff;
1190	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191		return ERR_PTR(-EINVAL);
1192
1193	cache_op = (config >>  8) & 0xff;
1194	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195		return ERR_PTR(-EINVAL);
1196
1197	cache_result = (config >> 16) & 0xff;
1198	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199		return ERR_PTR(-EINVAL);
1200
1201	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204		return ERR_PTR(-ENOENT);
1205
1206	if (pmap->encoding == CACHE_OP_NONSENSE)
1207		return ERR_PTR(-EINVAL);
1208
1209	return pmap;
1210}
1211
1212static void hw_perf_event_destroy(struct perf_event *event)
1213{
1214	perf_event_release_pmc();
1215}
1216
1217/* Make sure all events can be scheduled into the hardware at
1218 * the same time.  This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success.  These are pending indexes.  When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227static int sparc_check_constraints(struct perf_event **evts,
1228				   unsigned long *events, int n_ev)
1229{
1230	u8 msk0 = 0, msk1 = 0;
1231	int idx0 = 0;
1232
1233	/* This case is possible when we are invoked from
1234	 * hw_perf_group_sched_in().
1235	 */
1236	if (!n_ev)
1237		return 0;
1238
1239	if (n_ev > sparc_pmu->max_hw_events)
1240		return -1;
1241
1242	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243		int i;
1244
1245		for (i = 0; i < n_ev; i++)
1246			evts[i]->hw.idx = i;
1247		return 0;
1248	}
1249
1250	msk0 = perf_event_get_msk(events[0]);
1251	if (n_ev == 1) {
1252		if (msk0 & PIC_LOWER)
1253			idx0 = 1;
1254		goto success;
1255	}
1256	BUG_ON(n_ev != 2);
1257	msk1 = perf_event_get_msk(events[1]);
1258
1259	/* If both events can go on any counter, OK.  */
1260	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261	    msk1 == (PIC_UPPER | PIC_LOWER))
1262		goto success;
1263
1264	/* If one event is limited to a specific counter,
1265	 * and the other can go on both, OK.
1266	 */
1267	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1269		if (msk0 & PIC_LOWER)
1270			idx0 = 1;
1271		goto success;
1272	}
1273
1274	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1276		if (msk1 & PIC_UPPER)
1277			idx0 = 1;
1278		goto success;
1279	}
1280
1281	/* If the events are fixed to different counters, OK.  */
1282	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	/* Otherwise, there is a conflict.  */
1290	return -1;
1291
1292success:
1293	evts[0]->hw.idx = idx0;
1294	if (n_ev == 2)
1295		evts[1]->hw.idx = idx0 ^ 1;
1296	return 0;
1297}
1298
1299static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300{
1301	int eu = 0, ek = 0, eh = 0;
1302	struct perf_event *event;
1303	int i, n, first;
1304
1305	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306		return 0;
1307
1308	n = n_prev + n_new;
1309	if (n <= 1)
1310		return 0;
1311
1312	first = 1;
1313	for (i = 0; i < n; i++) {
1314		event = evts[i];
1315		if (first) {
1316			eu = event->attr.exclude_user;
1317			ek = event->attr.exclude_kernel;
1318			eh = event->attr.exclude_hv;
1319			first = 0;
1320		} else if (event->attr.exclude_user != eu ||
1321			   event->attr.exclude_kernel != ek ||
1322			   event->attr.exclude_hv != eh) {
1323			return -EAGAIN;
1324		}
1325	}
1326
1327	return 0;
1328}
1329
1330static int collect_events(struct perf_event *group, int max_count,
1331			  struct perf_event *evts[], unsigned long *events,
1332			  int *current_idx)
1333{
1334	struct perf_event *event;
1335	int n = 0;
1336
1337	if (!is_software_event(group)) {
1338		if (n >= max_count)
1339			return -1;
1340		evts[n] = group;
1341		events[n] = group->hw.event_base;
1342		current_idx[n++] = PIC_NO_INDEX;
1343	}
1344	list_for_each_entry(event, &group->sibling_list, group_entry) {
1345		if (!is_software_event(event) &&
1346		    event->state != PERF_EVENT_STATE_OFF) {
1347			if (n >= max_count)
1348				return -1;
1349			evts[n] = event;
1350			events[n] = event->hw.event_base;
1351			current_idx[n++] = PIC_NO_INDEX;
1352		}
1353	}
1354	return n;
1355}
1356
1357static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358{
1359	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1360	int n0, ret = -EAGAIN;
1361	unsigned long flags;
1362
1363	local_irq_save(flags);
1364	perf_pmu_disable(event->pmu);
1365
1366	n0 = cpuc->n_events;
1367	if (n0 >= sparc_pmu->max_hw_events)
1368		goto out;
1369
1370	cpuc->event[n0] = event;
1371	cpuc->events[n0] = event->hw.event_base;
1372	cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374	event->hw.state = PERF_HES_UPTODATE;
1375	if (!(ef_flags & PERF_EF_START))
1376		event->hw.state |= PERF_HES_STOPPED;
1377
1378	/*
1379	 * If group events scheduling transaction was started,
1380	 * skip the schedulability test here, it will be performed
1381	 * at commit time(->commit_txn) as a whole
1382	 */
1383	if (cpuc->group_flag & PERF_EVENT_TXN)
1384		goto nocheck;
1385
1386	if (check_excludes(cpuc->event, n0, 1))
1387		goto out;
1388	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389		goto out;
1390
1391nocheck:
1392	cpuc->n_events++;
1393	cpuc->n_added++;
1394
1395	ret = 0;
1396out:
1397	perf_pmu_enable(event->pmu);
1398	local_irq_restore(flags);
1399	return ret;
1400}
1401
1402static int sparc_pmu_event_init(struct perf_event *event)
1403{
1404	struct perf_event_attr *attr = &event->attr;
1405	struct perf_event *evts[MAX_HWEVENTS];
1406	struct hw_perf_event *hwc = &event->hw;
1407	unsigned long events[MAX_HWEVENTS];
1408	int current_idx_dmy[MAX_HWEVENTS];
1409	const struct perf_event_map *pmap;
1410	int n;
1411
1412	if (atomic_read(&nmi_active) < 0)
1413		return -ENODEV;
1414
1415	/* does not support taken branch sampling */
1416	if (has_branch_stack(event))
1417		return -EOPNOTSUPP;
1418
1419	switch (attr->type) {
1420	case PERF_TYPE_HARDWARE:
1421		if (attr->config >= sparc_pmu->max_events)
1422			return -EINVAL;
1423		pmap = sparc_pmu->event_map(attr->config);
1424		break;
1425
1426	case PERF_TYPE_HW_CACHE:
1427		pmap = sparc_map_cache_event(attr->config);
1428		if (IS_ERR(pmap))
1429			return PTR_ERR(pmap);
1430		break;
1431
1432	case PERF_TYPE_RAW:
1433		pmap = NULL;
1434		break;
1435
1436	default:
1437		return -ENOENT;
1438
1439	}
1440
1441	if (pmap) {
1442		hwc->event_base = perf_event_encode(pmap);
1443	} else {
1444		/*
1445		 * User gives us "(encoding << 16) | pic_mask" for
1446		 * PERF_TYPE_RAW events.
1447		 */
1448		hwc->event_base = attr->config;
1449	}
1450
1451	/* We save the enable bits in the config_base.  */
1452	hwc->config_base = sparc_pmu->irq_bit;
1453	if (!attr->exclude_user)
1454		hwc->config_base |= sparc_pmu->user_bit;
1455	if (!attr->exclude_kernel)
1456		hwc->config_base |= sparc_pmu->priv_bit;
1457	if (!attr->exclude_hv)
1458		hwc->config_base |= sparc_pmu->hv_bit;
1459
1460	n = 0;
1461	if (event->group_leader != event) {
1462		n = collect_events(event->group_leader,
1463				   sparc_pmu->max_hw_events - 1,
1464				   evts, events, current_idx_dmy);
1465		if (n < 0)
1466			return -EINVAL;
1467	}
1468	events[n] = hwc->event_base;
1469	evts[n] = event;
1470
1471	if (check_excludes(evts, n, 1))
1472		return -EINVAL;
1473
1474	if (sparc_check_constraints(evts, events, n + 1))
1475		return -EINVAL;
1476
1477	hwc->idx = PIC_NO_INDEX;
1478
1479	/* Try to do all error checking before this point, as unwinding
1480	 * state after grabbing the PMC is difficult.
1481	 */
1482	perf_event_grab_pmc();
1483	event->destroy = hw_perf_event_destroy;
1484
1485	if (!hwc->sample_period) {
1486		hwc->sample_period = MAX_PERIOD;
1487		hwc->last_period = hwc->sample_period;
1488		local64_set(&hwc->period_left, hwc->sample_period);
1489	}
1490
1491	return 0;
1492}
1493
1494/*
1495 * Start group events scheduling transaction
1496 * Set the flag to make pmu::enable() not perform the
1497 * schedulability test, it will be performed at commit time
1498 */
1499static void sparc_pmu_start_txn(struct pmu *pmu)
1500{
1501	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1502
1503	perf_pmu_disable(pmu);
1504	cpuhw->group_flag |= PERF_EVENT_TXN;
1505}
1506
1507/*
1508 * Stop group events scheduling transaction
1509 * Clear the flag and pmu::enable() will perform the
1510 * schedulability test.
1511 */
1512static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513{
1514	struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1515
1516	cpuhw->group_flag &= ~PERF_EVENT_TXN;
1517	perf_pmu_enable(pmu);
1518}
1519
1520/*
1521 * Commit group events scheduling transaction
1522 * Perform the group schedulability test as a whole
1523 * Return 0 if success
1524 */
1525static int sparc_pmu_commit_txn(struct pmu *pmu)
1526{
1527	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1528	int n;
1529
1530	if (!sparc_pmu)
1531		return -EINVAL;
1532
1533	cpuc = &__get_cpu_var(cpu_hw_events);
1534	n = cpuc->n_events;
1535	if (check_excludes(cpuc->event, 0, n))
1536		return -EINVAL;
1537	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538		return -EAGAIN;
1539
1540	cpuc->group_flag &= ~PERF_EVENT_TXN;
1541	perf_pmu_enable(pmu);
1542	return 0;
1543}
1544
1545static struct pmu pmu = {
1546	.pmu_enable	= sparc_pmu_enable,
1547	.pmu_disable	= sparc_pmu_disable,
1548	.event_init	= sparc_pmu_event_init,
1549	.add		= sparc_pmu_add,
1550	.del		= sparc_pmu_del,
1551	.start		= sparc_pmu_start,
1552	.stop		= sparc_pmu_stop,
1553	.read		= sparc_pmu_read,
1554	.start_txn	= sparc_pmu_start_txn,
1555	.cancel_txn	= sparc_pmu_cancel_txn,
1556	.commit_txn	= sparc_pmu_commit_txn,
1557};
1558
1559void perf_event_print_debug(void)
1560{
1561	unsigned long flags;
1562	int cpu, i;
 
1563
1564	if (!sparc_pmu)
1565		return;
1566
1567	local_irq_save(flags);
1568
1569	cpu = smp_processor_id();
1570
 
 
 
1571	pr_info("\n");
1572	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1573		pr_info("CPU#%d: PCR%d[%016llx]\n",
1574			cpu, i, pcr_ops->read_pcr(i));
1575	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1576		pr_info("CPU#%d: PIC%d[%016llx]\n",
1577			cpu, i, pcr_ops->read_pic(i));
1578
1579	local_irq_restore(flags);
1580}
1581
1582static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583					    unsigned long cmd, void *__args)
1584{
1585	struct die_args *args = __args;
1586	struct perf_sample_data data;
1587	struct cpu_hw_events *cpuc;
1588	struct pt_regs *regs;
1589	int i;
1590
1591	if (!atomic_read(&active_events))
1592		return NOTIFY_DONE;
1593
1594	switch (cmd) {
1595	case DIE_NMI:
1596		break;
1597
1598	default:
1599		return NOTIFY_DONE;
1600	}
1601
1602	regs = args->regs;
1603
 
 
1604	cpuc = &__get_cpu_var(cpu_hw_events);
1605
1606	/* If the PMU has the TOE IRQ enable bits, we need to do a
1607	 * dummy write to the %pcr to clear the overflow bits and thus
1608	 * the interrupt.
1609	 *
1610	 * Do this before we peek at the counters to determine
1611	 * overflow so we don't lose any events.
1612	 */
1613	if (sparc_pmu->irq_bit &&
1614	    sparc_pmu->num_pcrs == 1)
1615		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616
1617	for (i = 0; i < cpuc->n_events; i++) {
1618		struct perf_event *event = cpuc->event[i];
1619		int idx = cpuc->current_idx[i];
1620		struct hw_perf_event *hwc;
1621		u64 val;
1622
1623		if (sparc_pmu->irq_bit &&
1624		    sparc_pmu->num_pcrs > 1)
1625			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626
1627		hwc = &event->hw;
1628		val = sparc_perf_event_update(event, hwc, idx);
1629		if (val & (1ULL << 31))
1630			continue;
1631
1632		perf_sample_data_init(&data, 0, hwc->last_period);
1633		if (!sparc_perf_event_set_period(event, hwc, idx))
1634			continue;
1635
1636		if (perf_event_overflow(event, &data, regs))
1637			sparc_pmu_stop(event, 0);
1638	}
1639
1640	return NOTIFY_STOP;
1641}
1642
1643static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1644	.notifier_call		= perf_event_nmi_handler,
1645};
1646
1647static bool __init supported_pmu(void)
1648{
1649	if (!strcmp(sparc_pmu_type, "ultra3") ||
1650	    !strcmp(sparc_pmu_type, "ultra3+") ||
1651	    !strcmp(sparc_pmu_type, "ultra3i") ||
1652	    !strcmp(sparc_pmu_type, "ultra4+")) {
1653		sparc_pmu = &ultra3_pmu;
1654		return true;
1655	}
1656	if (!strcmp(sparc_pmu_type, "niagara")) {
1657		sparc_pmu = &niagara1_pmu;
1658		return true;
1659	}
1660	if (!strcmp(sparc_pmu_type, "niagara2") ||
1661	    !strcmp(sparc_pmu_type, "niagara3")) {
1662		sparc_pmu = &niagara2_pmu;
1663		return true;
1664	}
1665	if (!strcmp(sparc_pmu_type, "niagara4")) {
1666		sparc_pmu = &niagara4_pmu;
1667		return true;
1668	}
1669	return false;
1670}
1671
1672int __init init_hw_perf_events(void)
1673{
1674	pr_info("Performance events: ");
1675
1676	if (!supported_pmu()) {
1677		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1678		return 0;
1679	}
1680
1681	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1682
1683	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1684	register_die_notifier(&perf_event_nmi_notifier);
1685
1686	return 0;
1687}
1688early_initcall(init_hw_perf_events);
1689
1690void perf_callchain_kernel(struct perf_callchain_entry *entry,
1691			   struct pt_regs *regs)
1692{
1693	unsigned long ksp, fp;
1694#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1695	int graph = 0;
1696#endif
1697
1698	stack_trace_flush();
1699
1700	perf_callchain_store(entry, regs->tpc);
1701
1702	ksp = regs->u_regs[UREG_I6];
1703	fp = ksp + STACK_BIAS;
1704	do {
1705		struct sparc_stackf *sf;
1706		struct pt_regs *regs;
1707		unsigned long pc;
1708
1709		if (!kstack_valid(current_thread_info(), fp))
1710			break;
1711
1712		sf = (struct sparc_stackf *) fp;
1713		regs = (struct pt_regs *) (sf + 1);
1714
1715		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1716			if (user_mode(regs))
1717				break;
1718			pc = regs->tpc;
1719			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1720		} else {
1721			pc = sf->callers_pc;
1722			fp = (unsigned long)sf->fp + STACK_BIAS;
1723		}
1724		perf_callchain_store(entry, pc);
1725#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1726		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1727			int index = current->curr_ret_stack;
1728			if (current->ret_stack && index >= graph) {
1729				pc = current->ret_stack[index - graph].ret;
1730				perf_callchain_store(entry, pc);
1731				graph++;
1732			}
1733		}
1734#endif
1735	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1736}
1737
1738static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1739				   struct pt_regs *regs)
1740{
1741	unsigned long ufp;
1742
 
 
1743	ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744	do {
1745		struct sparc_stackf *usf, sf;
1746		unsigned long pc;
1747
1748		usf = (struct sparc_stackf *) ufp;
1749		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1750			break;
1751
1752		pc = sf.callers_pc;
1753		ufp = (unsigned long)sf.fp + STACK_BIAS;
1754		perf_callchain_store(entry, pc);
1755	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1756}
1757
1758static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1759				   struct pt_regs *regs)
1760{
1761	unsigned long ufp;
1762
 
 
1763	ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1764	do {
 
1765		unsigned long pc;
1766
1767		if (thread32_stack_is_64bit(ufp)) {
1768			struct sparc_stackf *usf, sf;
 
1769
1770			ufp += STACK_BIAS;
1771			usf = (struct sparc_stackf *) ufp;
1772			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1773				break;
1774			pc = sf.callers_pc & 0xffffffff;
1775			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1776		} else {
1777			struct sparc_stackf32 *usf, sf;
1778			usf = (struct sparc_stackf32 *) ufp;
1779			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1780				break;
1781			pc = sf.callers_pc;
1782			ufp = (unsigned long)sf.fp;
1783		}
1784		perf_callchain_store(entry, pc);
1785	} while (entry->nr < PERF_MAX_STACK_DEPTH);
1786}
1787
1788void
1789perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1790{
1791	perf_callchain_store(entry, regs->tpc);
1792
1793	if (!current->mm)
1794		return;
1795
1796	flushw_user();
1797	if (test_thread_flag(TIF_32BIT))
1798		perf_callchain_user_32(entry, regs);
1799	else
1800		perf_callchain_user_64(entry, regs);
1801}