Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/arch/arm/mm/fault.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2004 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/module.h>
 12#include <linux/signal.h>
 13#include <linux/mm.h>
 14#include <linux/hardirq.h>
 15#include <linux/init.h>
 16#include <linux/kprobes.h>
 17#include <linux/uaccess.h>
 18#include <linux/page-flags.h>
 19#include <linux/sched.h>
 20#include <linux/highmem.h>
 21#include <linux/perf_event.h>
 22
 23#include <asm/system.h>
 24#include <asm/pgtable.h>
 
 
 25#include <asm/tlbflush.h>
 26
 27#include "fault.h"
 28
 29/*
 30 * Fault status register encodings.  We steal bit 31 for our own purposes.
 31 */
 32#define FSR_LNX_PF		(1 << 31)
 33#define FSR_WRITE		(1 << 11)
 34#define FSR_FS4			(1 << 10)
 35#define FSR_FS3_0		(15)
 36
 37static inline int fsr_fs(unsigned int fsr)
 38{
 39	return (fsr & FSR_FS3_0) | (fsr & FSR_FS4) >> 6;
 40}
 41
 42#ifdef CONFIG_MMU
 43
 44#ifdef CONFIG_KPROBES
 45static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 46{
 47	int ret = 0;
 48
 49	if (!user_mode(regs)) {
 50		/* kprobe_running() needs smp_processor_id() */
 51		preempt_disable();
 52		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
 53			ret = 1;
 54		preempt_enable();
 55	}
 56
 57	return ret;
 58}
 59#else
 60static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 61{
 62	return 0;
 63}
 64#endif
 65
 66/*
 67 * This is useful to dump out the page tables associated with
 68 * 'addr' in mm 'mm'.
 69 */
 70void show_pte(struct mm_struct *mm, unsigned long addr)
 71{
 72	pgd_t *pgd;
 73
 74	if (!mm)
 75		mm = &init_mm;
 76
 77	printk(KERN_ALERT "pgd = %p\n", mm->pgd);
 78	pgd = pgd_offset(mm, addr);
 79	printk(KERN_ALERT "[%08lx] *pgd=%08llx",
 80			addr, (long long)pgd_val(*pgd));
 81
 82	do {
 83		pud_t *pud;
 84		pmd_t *pmd;
 85		pte_t *pte;
 86
 87		if (pgd_none(*pgd))
 88			break;
 89
 90		if (pgd_bad(*pgd)) {
 91			printk("(bad)");
 92			break;
 93		}
 94
 95		pud = pud_offset(pgd, addr);
 96		if (PTRS_PER_PUD != 1)
 97			printk(", *pud=%08llx", (long long)pud_val(*pud));
 98
 99		if (pud_none(*pud))
100			break;
101
102		if (pud_bad(*pud)) {
103			printk("(bad)");
104			break;
105		}
106
107		pmd = pmd_offset(pud, addr);
108		if (PTRS_PER_PMD != 1)
109			printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
110
111		if (pmd_none(*pmd))
112			break;
113
114		if (pmd_bad(*pmd)) {
115			printk("(bad)");
116			break;
117		}
118
119		/* We must not map this if we have highmem enabled */
120		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
121			break;
122
123		pte = pte_offset_map(pmd, addr);
124		printk(", *pte=%08llx", (long long)pte_val(*pte));
 
125		printk(", *ppte=%08llx",
126		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
 
127		pte_unmap(pte);
128	} while(0);
129
130	printk("\n");
131}
132#else					/* CONFIG_MMU */
133void show_pte(struct mm_struct *mm, unsigned long addr)
134{ }
135#endif					/* CONFIG_MMU */
136
137/*
138 * Oops.  The kernel tried to access some page that wasn't present.
139 */
140static void
141__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
142		  struct pt_regs *regs)
143{
144	/*
145	 * Are we prepared to handle this kernel fault?
146	 */
147	if (fixup_exception(regs))
148		return;
149
150	/*
151	 * No handler, we'll have to terminate things with extreme prejudice.
152	 */
153	bust_spinlocks(1);
154	printk(KERN_ALERT
155		"Unable to handle kernel %s at virtual address %08lx\n",
156		(addr < PAGE_SIZE) ? "NULL pointer dereference" :
157		"paging request", addr);
158
159	show_pte(mm, addr);
160	die("Oops", regs, fsr);
161	bust_spinlocks(0);
162	do_exit(SIGKILL);
163}
164
165/*
166 * Something tried to access memory that isn't in our memory map..
167 * User mode accesses just cause a SIGSEGV
168 */
169static void
170__do_user_fault(struct task_struct *tsk, unsigned long addr,
171		unsigned int fsr, unsigned int sig, int code,
172		struct pt_regs *regs)
173{
174	struct siginfo si;
175
176#ifdef CONFIG_DEBUG_USER
177	if (user_debug & UDBG_SEGV) {
 
178		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
179		       tsk->comm, sig, addr, fsr);
180		show_pte(tsk->mm, addr);
181		show_regs(regs);
182	}
183#endif
184
185	tsk->thread.address = addr;
186	tsk->thread.error_code = fsr;
187	tsk->thread.trap_no = 14;
188	si.si_signo = sig;
189	si.si_errno = 0;
190	si.si_code = code;
191	si.si_addr = (void __user *)addr;
192	force_sig_info(sig, &si, tsk);
193}
194
195void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
196{
197	struct task_struct *tsk = current;
198	struct mm_struct *mm = tsk->active_mm;
199
200	/*
201	 * If we are in kernel mode at this point, we
202	 * have no context to handle this fault with.
203	 */
204	if (user_mode(regs))
205		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
206	else
207		__do_kernel_fault(mm, addr, fsr, regs);
208}
209
210#ifdef CONFIG_MMU
211#define VM_FAULT_BADMAP		0x010000
212#define VM_FAULT_BADACCESS	0x020000
213
214/*
215 * Check that the permissions on the VMA allow for the fault which occurred.
216 * If we encountered a write fault, we must have write permission, otherwise
217 * we allow any permission.
218 */
219static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
220{
221	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
222
223	if (fsr & FSR_WRITE)
224		mask = VM_WRITE;
225	if (fsr & FSR_LNX_PF)
226		mask = VM_EXEC;
227
228	return vma->vm_flags & mask ? false : true;
229}
230
231static int __kprobes
232__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
233		struct task_struct *tsk)
234{
235	struct vm_area_struct *vma;
236	int fault;
237
238	vma = find_vma(mm, addr);
239	fault = VM_FAULT_BADMAP;
240	if (unlikely(!vma))
241		goto out;
242	if (unlikely(vma->vm_start > addr))
243		goto check_stack;
244
245	/*
246	 * Ok, we have a good vm_area for this
247	 * memory access, so we can handle it.
248	 */
249good_area:
250	if (access_error(fsr, vma)) {
251		fault = VM_FAULT_BADACCESS;
252		goto out;
253	}
254
255	/*
256	 * If for any reason at all we couldn't handle the fault, make
257	 * sure we exit gracefully rather than endlessly redo the fault.
258	 */
259	fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, (fsr & FSR_WRITE) ? FAULT_FLAG_WRITE : 0);
260	if (unlikely(fault & VM_FAULT_ERROR))
261		return fault;
262	if (fault & VM_FAULT_MAJOR)
263		tsk->maj_flt++;
264	else
265		tsk->min_flt++;
266	return fault;
267
268check_stack:
269	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
 
 
270		goto good_area;
271out:
272	return fault;
273}
274
275static int __kprobes
276do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
277{
278	struct task_struct *tsk;
279	struct mm_struct *mm;
280	int fault, sig, code;
 
281
282	if (notify_page_fault(regs, fsr))
283		return 0;
284
285	tsk = current;
286	mm  = tsk->mm;
287
288	/* Enable interrupts if they were enabled in the parent context. */
289	if (interrupts_enabled(regs))
290		local_irq_enable();
291
292	/*
293	 * If we're in an interrupt or have no user
294	 * context, we must not take the fault..
295	 */
296	if (in_atomic() || !mm)
297		goto no_context;
298
 
 
 
 
 
299	/*
300	 * As per x86, we may deadlock here.  However, since the kernel only
301	 * validly references user space from well defined areas of the code,
302	 * we can bug out early if this is from code which shouldn't.
303	 */
304	if (!down_read_trylock(&mm->mmap_sem)) {
305		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
306			goto no_context;
 
307		down_read(&mm->mmap_sem);
308	} else {
309		/*
310		 * The above down_read_trylock() might have succeeded in
311		 * which case, we'll have missed the might_sleep() from
312		 * down_read()
313		 */
314		might_sleep();
315#ifdef CONFIG_DEBUG_VM
316		if (!user_mode(regs) &&
317		    !search_exception_tables(regs->ARM_pc))
318			goto no_context;
319#endif
320	}
321
322	fault = __do_page_fault(mm, addr, fsr, tsk);
323	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
324
325	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
326	if (fault & VM_FAULT_MAJOR)
327		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, addr);
328	else if (fault & VM_FAULT_MINOR)
329		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
331	/*
332	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
333	 */
334	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
335		return 0;
336
 
 
 
 
 
 
 
337	if (fault & VM_FAULT_OOM) {
338		/*
339		 * We ran out of memory, call the OOM killer, and return to
340		 * userspace (which will retry the fault, or kill us if we
341		 * got oom-killed)
342		 */
343		pagefault_out_of_memory();
344		return 0;
345	}
346
347	/*
348	 * If we are in kernel mode at this point, we
349	 * have no context to handle this fault with.
350	 */
351	if (!user_mode(regs))
352		goto no_context;
353
354	if (fault & VM_FAULT_SIGBUS) {
355		/*
356		 * We had some memory, but were unable to
357		 * successfully fix up this page fault.
358		 */
359		sig = SIGBUS;
360		code = BUS_ADRERR;
361	} else {
362		/*
363		 * Something tried to access memory that
364		 * isn't in our memory map..
365		 */
366		sig = SIGSEGV;
367		code = fault == VM_FAULT_BADACCESS ?
368			SEGV_ACCERR : SEGV_MAPERR;
369	}
370
371	__do_user_fault(tsk, addr, fsr, sig, code, regs);
372	return 0;
373
374no_context:
375	__do_kernel_fault(mm, addr, fsr, regs);
376	return 0;
377}
378#else					/* CONFIG_MMU */
379static int
380do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
381{
382	return 0;
383}
384#endif					/* CONFIG_MMU */
385
386/*
387 * First Level Translation Fault Handler
388 *
389 * We enter here because the first level page table doesn't contain
390 * a valid entry for the address.
391 *
392 * If the address is in kernel space (>= TASK_SIZE), then we are
393 * probably faulting in the vmalloc() area.
394 *
395 * If the init_task's first level page tables contains the relevant
396 * entry, we copy the it to this task.  If not, we send the process
397 * a signal, fixup the exception, or oops the kernel.
398 *
399 * NOTE! We MUST NOT take any locks for this case. We may be in an
400 * interrupt or a critical region, and should only copy the information
401 * from the master page table, nothing more.
402 */
403#ifdef CONFIG_MMU
404static int __kprobes
405do_translation_fault(unsigned long addr, unsigned int fsr,
406		     struct pt_regs *regs)
407{
408	unsigned int index;
409	pgd_t *pgd, *pgd_k;
410	pud_t *pud, *pud_k;
411	pmd_t *pmd, *pmd_k;
412
413	if (addr < TASK_SIZE)
414		return do_page_fault(addr, fsr, regs);
415
416	if (user_mode(regs))
417		goto bad_area;
418
419	index = pgd_index(addr);
420
421	/*
422	 * FIXME: CP15 C1 is write only on ARMv3 architectures.
423	 */
424	pgd = cpu_get_pgd() + index;
425	pgd_k = init_mm.pgd + index;
426
427	if (pgd_none(*pgd_k))
428		goto bad_area;
429	if (!pgd_present(*pgd))
430		set_pgd(pgd, *pgd_k);
431
432	pud = pud_offset(pgd, addr);
433	pud_k = pud_offset(pgd_k, addr);
434
435	if (pud_none(*pud_k))
436		goto bad_area;
437	if (!pud_present(*pud))
438		set_pud(pud, *pud_k);
439
440	pmd = pmd_offset(pud, addr);
441	pmd_k = pmd_offset(pud_k, addr);
442
 
 
 
 
 
 
443	/*
444	 * On ARM one Linux PGD entry contains two hardware entries (see page
445	 * tables layout in pgtable.h). We normally guarantee that we always
446	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
447	 * It can create inidividual L1 entries, so here we have to call
448	 * pmd_none() check for the entry really corresponded to address, not
449	 * for the first of pair.
450	 */
451	index = (addr >> SECTION_SHIFT) & 1;
 
452	if (pmd_none(pmd_k[index]))
453		goto bad_area;
454
455	copy_pmd(pmd, pmd_k);
456	return 0;
457
458bad_area:
459	do_bad_area(addr, fsr, regs);
460	return 0;
461}
462#else					/* CONFIG_MMU */
463static int
464do_translation_fault(unsigned long addr, unsigned int fsr,
465		     struct pt_regs *regs)
466{
467	return 0;
468}
469#endif					/* CONFIG_MMU */
470
471/*
472 * Some section permission faults need to be handled gracefully.
473 * They can happen due to a __{get,put}_user during an oops.
474 */
 
475static int
476do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
477{
478	do_bad_area(addr, fsr, regs);
479	return 0;
480}
 
481
482/*
483 * This abort handler always returns "fault".
484 */
485static int
486do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
487{
488	return 1;
489}
490
491static struct fsr_info {
492	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
493	int	sig;
494	int	code;
495	const char *name;
496} fsr_info[] = {
497	/*
498	 * The following are the standard ARMv3 and ARMv4 aborts.  ARMv5
499	 * defines these to be "precise" aborts.
500	 */
501	{ do_bad,		SIGSEGV, 0,		"vector exception"		   },
502	{ do_bad,		SIGBUS,	 BUS_ADRALN,	"alignment exception"		   },
503	{ do_bad,		SIGKILL, 0,		"terminal exception"		   },
504	{ do_bad,		SIGBUS,	 BUS_ADRALN,	"alignment exception"		   },
505	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
506	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"section translation fault"	   },
507	{ do_bad,		SIGBUS,	 0,		"external abort on linefetch"	   },
508	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"page translation fault"	   },
509	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
510	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section domain fault"		   },
511	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
512	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page domain fault"		   },
513	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
514	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"section permission fault"	   },
515	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
516	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"page permission fault"		   },
517	/*
518	 * The following are "imprecise" aborts, which are signalled by bit
519	 * 10 of the FSR, and may not be recoverable.  These are only
520	 * supported if the CPU abort handler supports bit 10.
521	 */
522	{ do_bad,		SIGBUS,  0,		"unknown 16"			   },
523	{ do_bad,		SIGBUS,  0,		"unknown 17"			   },
524	{ do_bad,		SIGBUS,  0,		"unknown 18"			   },
525	{ do_bad,		SIGBUS,  0,		"unknown 19"			   },
526	{ do_bad,		SIGBUS,  0,		"lock abort"			   }, /* xscale */
527	{ do_bad,		SIGBUS,  0,		"unknown 21"			   },
528	{ do_bad,		SIGBUS,  BUS_OBJERR,	"imprecise external abort"	   }, /* xscale */
529	{ do_bad,		SIGBUS,  0,		"unknown 23"			   },
530	{ do_bad,		SIGBUS,  0,		"dcache parity error"		   }, /* xscale */
531	{ do_bad,		SIGBUS,  0,		"unknown 25"			   },
532	{ do_bad,		SIGBUS,  0,		"unknown 26"			   },
533	{ do_bad,		SIGBUS,  0,		"unknown 27"			   },
534	{ do_bad,		SIGBUS,  0,		"unknown 28"			   },
535	{ do_bad,		SIGBUS,  0,		"unknown 29"			   },
536	{ do_bad,		SIGBUS,  0,		"unknown 30"			   },
537	{ do_bad,		SIGBUS,  0,		"unknown 31"			   }
538};
539
 
 
 
 
 
 
 
540void __init
541hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
542		int sig, int code, const char *name)
543{
544	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
545		BUG();
546
547	fsr_info[nr].fn   = fn;
548	fsr_info[nr].sig  = sig;
549	fsr_info[nr].code = code;
550	fsr_info[nr].name = name;
551}
552
553/*
554 * Dispatch a data abort to the relevant handler.
555 */
556asmlinkage void __exception
557do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
558{
559	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
560	struct siginfo info;
561
562	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
563		return;
564
565	printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
566		inf->name, fsr, addr);
567
568	info.si_signo = inf->sig;
569	info.si_errno = 0;
570	info.si_code  = inf->code;
571	info.si_addr  = (void __user *)addr;
572	arm_notify_die("", regs, &info, fsr, 0);
573}
574
575
576static struct fsr_info ifsr_info[] = {
577	{ do_bad,		SIGBUS,  0,		"unknown 0"			   },
578	{ do_bad,		SIGBUS,  0,		"unknown 1"			   },
579	{ do_bad,		SIGBUS,  0,		"debug event"			   },
580	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section access flag fault"	   },
581	{ do_bad,		SIGBUS,  0,		"unknown 4"			   },
582	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"section translation fault"	   },
583	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page access flag fault"	   },
584	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"page translation fault"	   },
585	{ do_bad,		SIGBUS,	 0,		"external abort on non-linefetch"  },
586	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"section domain fault"		   },
587	{ do_bad,		SIGBUS,  0,		"unknown 10"			   },
588	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"page domain fault"		   },
589	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
590	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"section permission fault"	   },
591	{ do_bad,		SIGBUS,	 0,		"external abort on translation"	   },
592	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"page permission fault"		   },
593	{ do_bad,		SIGBUS,  0,		"unknown 16"			   },
594	{ do_bad,		SIGBUS,  0,		"unknown 17"			   },
595	{ do_bad,		SIGBUS,  0,		"unknown 18"			   },
596	{ do_bad,		SIGBUS,  0,		"unknown 19"			   },
597	{ do_bad,		SIGBUS,  0,		"unknown 20"			   },
598	{ do_bad,		SIGBUS,  0,		"unknown 21"			   },
599	{ do_bad,		SIGBUS,  0,		"unknown 22"			   },
600	{ do_bad,		SIGBUS,  0,		"unknown 23"			   },
601	{ do_bad,		SIGBUS,  0,		"unknown 24"			   },
602	{ do_bad,		SIGBUS,  0,		"unknown 25"			   },
603	{ do_bad,		SIGBUS,  0,		"unknown 26"			   },
604	{ do_bad,		SIGBUS,  0,		"unknown 27"			   },
605	{ do_bad,		SIGBUS,  0,		"unknown 28"			   },
606	{ do_bad,		SIGBUS,  0,		"unknown 29"			   },
607	{ do_bad,		SIGBUS,  0,		"unknown 30"			   },
608	{ do_bad,		SIGBUS,  0,		"unknown 31"			   },
609};
610
611void __init
612hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
613		 int sig, int code, const char *name)
614{
615	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
616		BUG();
617
618	ifsr_info[nr].fn   = fn;
619	ifsr_info[nr].sig  = sig;
620	ifsr_info[nr].code = code;
621	ifsr_info[nr].name = name;
622}
623
624asmlinkage void __exception
625do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
626{
627	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
628	struct siginfo info;
629
630	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
631		return;
632
633	printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
634		inf->name, ifsr, addr);
635
636	info.si_signo = inf->sig;
637	info.si_errno = 0;
638	info.si_code  = inf->code;
639	info.si_addr  = (void __user *)addr;
640	arm_notify_die("", regs, &info, ifsr, 0);
641}
642
 
643static int __init exceptions_init(void)
644{
645	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
646		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
647				"I-cache maintenance fault");
648	}
649
650	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
651		/*
652		 * TODO: Access flag faults introduced in ARMv6K.
653		 * Runtime check for 'K' extension is needed
654		 */
655		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
656				"section access flag fault");
657		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
658				"section access flag fault");
659	}
660
661	return 0;
662}
663
664arch_initcall(exceptions_init);
v3.15
  1/*
  2 *  linux/arch/arm/mm/fault.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Modifications for ARM processor (c) 1995-2004 Russell King
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/module.h>
 12#include <linux/signal.h>
 13#include <linux/mm.h>
 14#include <linux/hardirq.h>
 15#include <linux/init.h>
 16#include <linux/kprobes.h>
 17#include <linux/uaccess.h>
 18#include <linux/page-flags.h>
 19#include <linux/sched.h>
 20#include <linux/highmem.h>
 21#include <linux/perf_event.h>
 22
 23#include <asm/exception.h>
 24#include <asm/pgtable.h>
 25#include <asm/system_misc.h>
 26#include <asm/system_info.h>
 27#include <asm/tlbflush.h>
 28
 29#include "fault.h"
 30
 
 
 
 
 
 
 
 
 
 
 
 
 
 31#ifdef CONFIG_MMU
 32
 33#ifdef CONFIG_KPROBES
 34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 35{
 36	int ret = 0;
 37
 38	if (!user_mode(regs)) {
 39		/* kprobe_running() needs smp_processor_id() */
 40		preempt_disable();
 41		if (kprobe_running() && kprobe_fault_handler(regs, fsr))
 42			ret = 1;
 43		preempt_enable();
 44	}
 45
 46	return ret;
 47}
 48#else
 49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
 50{
 51	return 0;
 52}
 53#endif
 54
 55/*
 56 * This is useful to dump out the page tables associated with
 57 * 'addr' in mm 'mm'.
 58 */
 59void show_pte(struct mm_struct *mm, unsigned long addr)
 60{
 61	pgd_t *pgd;
 62
 63	if (!mm)
 64		mm = &init_mm;
 65
 66	printk(KERN_ALERT "pgd = %p\n", mm->pgd);
 67	pgd = pgd_offset(mm, addr);
 68	printk(KERN_ALERT "[%08lx] *pgd=%08llx",
 69			addr, (long long)pgd_val(*pgd));
 70
 71	do {
 72		pud_t *pud;
 73		pmd_t *pmd;
 74		pte_t *pte;
 75
 76		if (pgd_none(*pgd))
 77			break;
 78
 79		if (pgd_bad(*pgd)) {
 80			printk("(bad)");
 81			break;
 82		}
 83
 84		pud = pud_offset(pgd, addr);
 85		if (PTRS_PER_PUD != 1)
 86			printk(", *pud=%08llx", (long long)pud_val(*pud));
 87
 88		if (pud_none(*pud))
 89			break;
 90
 91		if (pud_bad(*pud)) {
 92			printk("(bad)");
 93			break;
 94		}
 95
 96		pmd = pmd_offset(pud, addr);
 97		if (PTRS_PER_PMD != 1)
 98			printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
 99
100		if (pmd_none(*pmd))
101			break;
102
103		if (pmd_bad(*pmd)) {
104			printk("(bad)");
105			break;
106		}
107
108		/* We must not map this if we have highmem enabled */
109		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110			break;
111
112		pte = pte_offset_map(pmd, addr);
113		printk(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115		printk(", *ppte=%08llx",
116		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118		pte_unmap(pte);
119	} while(0);
120
121	printk("\n");
122}
123#else					/* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif					/* CONFIG_MMU */
127
128/*
129 * Oops.  The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133		  struct pt_regs *regs)
134{
135	/*
136	 * Are we prepared to handle this kernel fault?
137	 */
138	if (fixup_exception(regs))
139		return;
140
141	/*
142	 * No handler, we'll have to terminate things with extreme prejudice.
143	 */
144	bust_spinlocks(1);
145	printk(KERN_ALERT
146		"Unable to handle kernel %s at virtual address %08lx\n",
147		(addr < PAGE_SIZE) ? "NULL pointer dereference" :
148		"paging request", addr);
149
150	show_pte(mm, addr);
151	die("Oops", regs, fsr);
152	bust_spinlocks(0);
153	do_exit(SIGKILL);
154}
155
156/*
157 * Something tried to access memory that isn't in our memory map..
158 * User mode accesses just cause a SIGSEGV
159 */
160static void
161__do_user_fault(struct task_struct *tsk, unsigned long addr,
162		unsigned int fsr, unsigned int sig, int code,
163		struct pt_regs *regs)
164{
165	struct siginfo si;
166
167#ifdef CONFIG_DEBUG_USER
168	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
170		printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171		       tsk->comm, sig, addr, fsr);
172		show_pte(tsk->mm, addr);
173		show_regs(regs);
174	}
175#endif
176
177	tsk->thread.address = addr;
178	tsk->thread.error_code = fsr;
179	tsk->thread.trap_no = 14;
180	si.si_signo = sig;
181	si.si_errno = 0;
182	si.si_code = code;
183	si.si_addr = (void __user *)addr;
184	force_sig_info(sig, &si, tsk);
185}
186
187void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
188{
189	struct task_struct *tsk = current;
190	struct mm_struct *mm = tsk->active_mm;
191
192	/*
193	 * If we are in kernel mode at this point, we
194	 * have no context to handle this fault with.
195	 */
196	if (user_mode(regs))
197		__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198	else
199		__do_kernel_fault(mm, addr, fsr, regs);
200}
201
202#ifdef CONFIG_MMU
203#define VM_FAULT_BADMAP		0x010000
204#define VM_FAULT_BADACCESS	0x020000
205
206/*
207 * Check that the permissions on the VMA allow for the fault which occurred.
208 * If we encountered a write fault, we must have write permission, otherwise
209 * we allow any permission.
210 */
211static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
212{
213	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
214
215	if (fsr & FSR_WRITE)
216		mask = VM_WRITE;
217	if (fsr & FSR_LNX_PF)
218		mask = VM_EXEC;
219
220	return vma->vm_flags & mask ? false : true;
221}
222
223static int __kprobes
224__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225		unsigned int flags, struct task_struct *tsk)
226{
227	struct vm_area_struct *vma;
228	int fault;
229
230	vma = find_vma(mm, addr);
231	fault = VM_FAULT_BADMAP;
232	if (unlikely(!vma))
233		goto out;
234	if (unlikely(vma->vm_start > addr))
235		goto check_stack;
236
237	/*
238	 * Ok, we have a good vm_area for this
239	 * memory access, so we can handle it.
240	 */
241good_area:
242	if (access_error(fsr, vma)) {
243		fault = VM_FAULT_BADACCESS;
244		goto out;
245	}
246
247	return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
 
 
 
 
 
 
 
 
 
 
 
248
249check_stack:
250	/* Don't allow expansion below FIRST_USER_ADDRESS */
251	if (vma->vm_flags & VM_GROWSDOWN &&
252	    addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253		goto good_area;
254out:
255	return fault;
256}
257
258static int __kprobes
259do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
260{
261	struct task_struct *tsk;
262	struct mm_struct *mm;
263	int fault, sig, code;
264	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
265
266	if (notify_page_fault(regs, fsr))
267		return 0;
268
269	tsk = current;
270	mm  = tsk->mm;
271
272	/* Enable interrupts if they were enabled in the parent context. */
273	if (interrupts_enabled(regs))
274		local_irq_enable();
275
276	/*
277	 * If we're in an interrupt or have no user
278	 * context, we must not take the fault..
279	 */
280	if (in_atomic() || !mm)
281		goto no_context;
282
283	if (user_mode(regs))
284		flags |= FAULT_FLAG_USER;
285	if (fsr & FSR_WRITE)
286		flags |= FAULT_FLAG_WRITE;
287
288	/*
289	 * As per x86, we may deadlock here.  However, since the kernel only
290	 * validly references user space from well defined areas of the code,
291	 * we can bug out early if this is from code which shouldn't.
292	 */
293	if (!down_read_trylock(&mm->mmap_sem)) {
294		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
295			goto no_context;
296retry:
297		down_read(&mm->mmap_sem);
298	} else {
299		/*
300		 * The above down_read_trylock() might have succeeded in
301		 * which case, we'll have missed the might_sleep() from
302		 * down_read()
303		 */
304		might_sleep();
305#ifdef CONFIG_DEBUG_VM
306		if (!user_mode(regs) &&
307		    !search_exception_tables(regs->ARM_pc))
308			goto no_context;
309#endif
310	}
311
312	fault = __do_page_fault(mm, addr, fsr, flags, tsk);
313
314	/* If we need to retry but a fatal signal is pending, handle the
315	 * signal first. We do not need to release the mmap_sem because
316	 * it would already be released in __lock_page_or_retry in
317	 * mm/filemap.c. */
318	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
319		return 0;
320
321	/*
322	 * Major/minor page fault accounting is only done on the
323	 * initial attempt. If we go through a retry, it is extremely
324	 * likely that the page will be found in page cache at that point.
325	 */
326
327	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
328	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
329		if (fault & VM_FAULT_MAJOR) {
330			tsk->maj_flt++;
331			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
332					regs, addr);
333		} else {
334			tsk->min_flt++;
335			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
336					regs, addr);
337		}
338		if (fault & VM_FAULT_RETRY) {
339			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
340			* of starvation. */
341			flags &= ~FAULT_FLAG_ALLOW_RETRY;
342			flags |= FAULT_FLAG_TRIED;
343			goto retry;
344		}
345	}
346
347	up_read(&mm->mmap_sem);
348
349	/*
350	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
351	 */
352	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
353		return 0;
354
355	/*
356	 * If we are in kernel mode at this point, we
357	 * have no context to handle this fault with.
358	 */
359	if (!user_mode(regs))
360		goto no_context;
361
362	if (fault & VM_FAULT_OOM) {
363		/*
364		 * We ran out of memory, call the OOM killer, and return to
365		 * userspace (which will retry the fault, or kill us if we
366		 * got oom-killed)
367		 */
368		pagefault_out_of_memory();
369		return 0;
370	}
371
 
 
 
 
 
 
 
372	if (fault & VM_FAULT_SIGBUS) {
373		/*
374		 * We had some memory, but were unable to
375		 * successfully fix up this page fault.
376		 */
377		sig = SIGBUS;
378		code = BUS_ADRERR;
379	} else {
380		/*
381		 * Something tried to access memory that
382		 * isn't in our memory map..
383		 */
384		sig = SIGSEGV;
385		code = fault == VM_FAULT_BADACCESS ?
386			SEGV_ACCERR : SEGV_MAPERR;
387	}
388
389	__do_user_fault(tsk, addr, fsr, sig, code, regs);
390	return 0;
391
392no_context:
393	__do_kernel_fault(mm, addr, fsr, regs);
394	return 0;
395}
396#else					/* CONFIG_MMU */
397static int
398do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
399{
400	return 0;
401}
402#endif					/* CONFIG_MMU */
403
404/*
405 * First Level Translation Fault Handler
406 *
407 * We enter here because the first level page table doesn't contain
408 * a valid entry for the address.
409 *
410 * If the address is in kernel space (>= TASK_SIZE), then we are
411 * probably faulting in the vmalloc() area.
412 *
413 * If the init_task's first level page tables contains the relevant
414 * entry, we copy the it to this task.  If not, we send the process
415 * a signal, fixup the exception, or oops the kernel.
416 *
417 * NOTE! We MUST NOT take any locks for this case. We may be in an
418 * interrupt or a critical region, and should only copy the information
419 * from the master page table, nothing more.
420 */
421#ifdef CONFIG_MMU
422static int __kprobes
423do_translation_fault(unsigned long addr, unsigned int fsr,
424		     struct pt_regs *regs)
425{
426	unsigned int index;
427	pgd_t *pgd, *pgd_k;
428	pud_t *pud, *pud_k;
429	pmd_t *pmd, *pmd_k;
430
431	if (addr < TASK_SIZE)
432		return do_page_fault(addr, fsr, regs);
433
434	if (user_mode(regs))
435		goto bad_area;
436
437	index = pgd_index(addr);
438
 
 
 
439	pgd = cpu_get_pgd() + index;
440	pgd_k = init_mm.pgd + index;
441
442	if (pgd_none(*pgd_k))
443		goto bad_area;
444	if (!pgd_present(*pgd))
445		set_pgd(pgd, *pgd_k);
446
447	pud = pud_offset(pgd, addr);
448	pud_k = pud_offset(pgd_k, addr);
449
450	if (pud_none(*pud_k))
451		goto bad_area;
452	if (!pud_present(*pud))
453		set_pud(pud, *pud_k);
454
455	pmd = pmd_offset(pud, addr);
456	pmd_k = pmd_offset(pud_k, addr);
457
458#ifdef CONFIG_ARM_LPAE
459	/*
460	 * Only one hardware entry per PMD with LPAE.
461	 */
462	index = 0;
463#else
464	/*
465	 * On ARM one Linux PGD entry contains two hardware entries (see page
466	 * tables layout in pgtable.h). We normally guarantee that we always
467	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
468	 * It can create inidividual L1 entries, so here we have to call
469	 * pmd_none() check for the entry really corresponded to address, not
470	 * for the first of pair.
471	 */
472	index = (addr >> SECTION_SHIFT) & 1;
473#endif
474	if (pmd_none(pmd_k[index]))
475		goto bad_area;
476
477	copy_pmd(pmd, pmd_k);
478	return 0;
479
480bad_area:
481	do_bad_area(addr, fsr, regs);
482	return 0;
483}
484#else					/* CONFIG_MMU */
485static int
486do_translation_fault(unsigned long addr, unsigned int fsr,
487		     struct pt_regs *regs)
488{
489	return 0;
490}
491#endif					/* CONFIG_MMU */
492
493/*
494 * Some section permission faults need to be handled gracefully.
495 * They can happen due to a __{get,put}_user during an oops.
496 */
497#ifndef CONFIG_ARM_LPAE
498static int
499do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
500{
501	do_bad_area(addr, fsr, regs);
502	return 0;
503}
504#endif /* CONFIG_ARM_LPAE */
505
506/*
507 * This abort handler always returns "fault".
508 */
509static int
510do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
511{
512	return 1;
513}
514
515struct fsr_info {
516	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
517	int	sig;
518	int	code;
519	const char *name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520};
521
522/* FSR definition */
523#ifdef CONFIG_ARM_LPAE
524#include "fsr-3level.c"
525#else
526#include "fsr-2level.c"
527#endif
528
529void __init
530hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
531		int sig, int code, const char *name)
532{
533	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
534		BUG();
535
536	fsr_info[nr].fn   = fn;
537	fsr_info[nr].sig  = sig;
538	fsr_info[nr].code = code;
539	fsr_info[nr].name = name;
540}
541
542/*
543 * Dispatch a data abort to the relevant handler.
544 */
545asmlinkage void __exception
546do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
547{
548	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
549	struct siginfo info;
550
551	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
552		return;
553
554	printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
555		inf->name, fsr, addr);
556
557	info.si_signo = inf->sig;
558	info.si_errno = 0;
559	info.si_code  = inf->code;
560	info.si_addr  = (void __user *)addr;
561	arm_notify_die("", regs, &info, fsr, 0);
562}
563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564void __init
565hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
566		 int sig, int code, const char *name)
567{
568	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
569		BUG();
570
571	ifsr_info[nr].fn   = fn;
572	ifsr_info[nr].sig  = sig;
573	ifsr_info[nr].code = code;
574	ifsr_info[nr].name = name;
575}
576
577asmlinkage void __exception
578do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
579{
580	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
581	struct siginfo info;
582
583	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
584		return;
585
586	printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
587		inf->name, ifsr, addr);
588
589	info.si_signo = inf->sig;
590	info.si_errno = 0;
591	info.si_code  = inf->code;
592	info.si_addr  = (void __user *)addr;
593	arm_notify_die("", regs, &info, ifsr, 0);
594}
595
596#ifndef CONFIG_ARM_LPAE
597static int __init exceptions_init(void)
598{
599	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
600		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
601				"I-cache maintenance fault");
602	}
603
604	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
605		/*
606		 * TODO: Access flag faults introduced in ARMv6K.
607		 * Runtime check for 'K' extension is needed
608		 */
609		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
610				"section access flag fault");
611		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
612				"section access flag fault");
613	}
614
615	return 0;
616}
617
618arch_initcall(exceptions_init);
619#endif