Linux Audio

Check our new training course

Loading...
v3.1
  1#undef DEBUG
  2
  3/*
  4 * ARM performance counter support.
  5 *
  6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  8 *
  9 * This code is based on the sparc64 perf event code, which is in turn based
 10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
 11 * code.
 12 */
 13#define pr_fmt(fmt) "hw perfevents: " fmt
 14
 15#include <linux/interrupt.h>
 16#include <linux/kernel.h>
 17#include <linux/module.h>
 18#include <linux/perf_event.h>
 19#include <linux/platform_device.h>
 20#include <linux/spinlock.h>
 21#include <linux/uaccess.h>
 
 
 22
 23#include <asm/cputype.h>
 24#include <asm/irq.h>
 25#include <asm/irq_regs.h>
 26#include <asm/pmu.h>
 27#include <asm/stacktrace.h>
 28
 29static struct platform_device *pmu_device;
 30
 31/*
 32 * Hardware lock to serialize accesses to PMU registers. Needed for the
 33 * read/modify/write sequences.
 34 */
 35static DEFINE_RAW_SPINLOCK(pmu_lock);
 36
 37/*
 38 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
 39 * another platform that supports more, we need to increase this to be the
 40 * largest of all platforms.
 41 *
 42 * ARMv7 supports up to 32 events:
 43 *  cycle counter CCNT + 31 events counters CNT0..30.
 44 *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
 45 */
 46#define ARMPMU_MAX_HWEVENTS		33
 47
 48/* The events for a given CPU. */
 49struct cpu_hw_events {
 50	/*
 51	 * The events that are active on the CPU for the given index. Index 0
 52	 * is reserved.
 53	 */
 54	struct perf_event	*events[ARMPMU_MAX_HWEVENTS];
 55
 56	/*
 57	 * A 1 bit for an index indicates that the counter is being used for
 58	 * an event. A 0 means that the counter can be used.
 59	 */
 60	unsigned long		used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
 61
 62	/*
 63	 * A 1 bit for an index indicates that the counter is actively being
 64	 * used.
 65	 */
 66	unsigned long		active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
 67};
 68static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 69
 70struct arm_pmu {
 71	enum arm_perf_pmu_ids id;
 72	const char	*name;
 73	irqreturn_t	(*handle_irq)(int irq_num, void *dev);
 74	void		(*enable)(struct hw_perf_event *evt, int idx);
 75	void		(*disable)(struct hw_perf_event *evt, int idx);
 76	int		(*get_event_idx)(struct cpu_hw_events *cpuc,
 77					 struct hw_perf_event *hwc);
 78	u32		(*read_counter)(int idx);
 79	void		(*write_counter)(int idx, u32 val);
 80	void		(*start)(void);
 81	void		(*stop)(void);
 82	void		(*reset)(void *);
 83	const unsigned	(*cache_map)[PERF_COUNT_HW_CACHE_MAX]
 84				    [PERF_COUNT_HW_CACHE_OP_MAX]
 85				    [PERF_COUNT_HW_CACHE_RESULT_MAX];
 86	const unsigned	(*event_map)[PERF_COUNT_HW_MAX];
 87	u32		raw_event_mask;
 88	int		num_events;
 89	u64		max_period;
 90};
 91
 92/* Set at runtime when we know what CPU type we are. */
 93static const struct arm_pmu *armpmu;
 94
 95enum arm_perf_pmu_ids
 96armpmu_get_pmu_id(void)
 97{
 98	int id = -ENODEV;
 99
100	if (armpmu != NULL)
101		id = armpmu->id;
102
103	return id;
104}
105EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
106
107int
108armpmu_get_max_events(void)
109{
110	int max_events = 0;
111
112	if (armpmu != NULL)
113		max_events = armpmu->num_events;
114
115	return max_events;
116}
117EXPORT_SYMBOL_GPL(armpmu_get_max_events);
118
119int perf_num_counters(void)
120{
121	return armpmu_get_max_events();
122}
123EXPORT_SYMBOL_GPL(perf_num_counters);
124
125#define HW_OP_UNSUPPORTED		0xFFFF
126
127#define C(_x) \
128	PERF_COUNT_HW_CACHE_##_x
129
130#define CACHE_OP_UNSUPPORTED		0xFFFF
131
132static int
133armpmu_map_cache_event(u64 config)
 
 
 
 
134{
135	unsigned int cache_type, cache_op, cache_result, ret;
136
137	cache_type = (config >>  0) & 0xff;
138	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
139		return -EINVAL;
140
141	cache_op = (config >>  8) & 0xff;
142	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
143		return -EINVAL;
144
145	cache_result = (config >> 16) & 0xff;
146	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
147		return -EINVAL;
148
149	ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
150
151	if (ret == CACHE_OP_UNSUPPORTED)
152		return -ENOENT;
153
154	return ret;
155}
156
157static int
158armpmu_map_event(u64 config)
159{
160	int mapping = (*armpmu->event_map)[config];
161	return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
 
 
 
 
 
162}
163
164static int
165armpmu_map_raw_event(u64 config)
166{
167	return (int)(config & armpmu->raw_event_mask);
168}
169
170static int
171armpmu_event_set_period(struct perf_event *event,
172			struct hw_perf_event *hwc,
173			int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174{
 
 
175	s64 left = local64_read(&hwc->period_left);
176	s64 period = hwc->sample_period;
177	int ret = 0;
178
179	if (unlikely(left <= -period)) {
180		left = period;
181		local64_set(&hwc->period_left, left);
182		hwc->last_period = period;
183		ret = 1;
184	}
185
186	if (unlikely(left <= 0)) {
187		left += period;
188		local64_set(&hwc->period_left, left);
189		hwc->last_period = period;
190		ret = 1;
191	}
192
193	if (left > (s64)armpmu->max_period)
194		left = armpmu->max_period;
195
196	local64_set(&hwc->prev_count, (u64)-left);
197
198	armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
199
200	perf_event_update_userpage(event);
201
202	return ret;
203}
204
205static u64
206armpmu_event_update(struct perf_event *event,
207		    struct hw_perf_event *hwc,
208		    int idx, int overflow)
209{
 
 
210	u64 delta, prev_raw_count, new_raw_count;
211
212again:
213	prev_raw_count = local64_read(&hwc->prev_count);
214	new_raw_count = armpmu->read_counter(idx);
215
216	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
217			     new_raw_count) != prev_raw_count)
218		goto again;
219
220	new_raw_count &= armpmu->max_period;
221	prev_raw_count &= armpmu->max_period;
222
223	if (overflow)
224		delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
225	else
226		delta = new_raw_count - prev_raw_count;
227
228	local64_add(delta, &event->count);
229	local64_sub(delta, &hwc->period_left);
230
231	return new_raw_count;
232}
233
234static void
235armpmu_read(struct perf_event *event)
236{
237	struct hw_perf_event *hwc = &event->hw;
238
239	/* Don't read disabled counters! */
240	if (hwc->idx < 0)
241		return;
242
243	armpmu_event_update(event, hwc, hwc->idx, 0);
244}
245
246static void
247armpmu_stop(struct perf_event *event, int flags)
248{
 
249	struct hw_perf_event *hwc = &event->hw;
250
251	if (!armpmu)
252		return;
253
254	/*
255	 * ARM pmu always has to update the counter, so ignore
256	 * PERF_EF_UPDATE, see comments in armpmu_start().
257	 */
258	if (!(hwc->state & PERF_HES_STOPPED)) {
259		armpmu->disable(hwc, hwc->idx);
260		barrier(); /* why? */
261		armpmu_event_update(event, hwc, hwc->idx, 0);
262		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
263	}
264}
265
266static void
267armpmu_start(struct perf_event *event, int flags)
268{
 
269	struct hw_perf_event *hwc = &event->hw;
270
271	if (!armpmu)
272		return;
273
274	/*
275	 * ARM pmu always has to reprogram the period, so ignore
276	 * PERF_EF_RELOAD, see the comment below.
277	 */
278	if (flags & PERF_EF_RELOAD)
279		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
280
281	hwc->state = 0;
282	/*
283	 * Set the period again. Some counters can't be stopped, so when we
284	 * were stopped we simply disabled the IRQ source and the counter
285	 * may have been left counting. If we don't do this step then we may
286	 * get an interrupt too soon or *way* too late if the overflow has
287	 * happened since disabling.
288	 */
289	armpmu_event_set_period(event, hwc, hwc->idx);
290	armpmu->enable(hwc, hwc->idx);
291}
292
293static void
294armpmu_del(struct perf_event *event, int flags)
295{
296	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 
297	struct hw_perf_event *hwc = &event->hw;
298	int idx = hwc->idx;
299
300	WARN_ON(idx < 0);
301
302	clear_bit(idx, cpuc->active_mask);
303	armpmu_stop(event, PERF_EF_UPDATE);
304	cpuc->events[idx] = NULL;
305	clear_bit(idx, cpuc->used_mask);
 
 
306
307	perf_event_update_userpage(event);
308}
309
310static int
311armpmu_add(struct perf_event *event, int flags)
312{
313	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 
314	struct hw_perf_event *hwc = &event->hw;
315	int idx;
316	int err = 0;
317
318	perf_pmu_disable(event->pmu);
319
320	/* If we don't have a space for the counter then finish early. */
321	idx = armpmu->get_event_idx(cpuc, hwc);
322	if (idx < 0) {
323		err = idx;
324		goto out;
325	}
326
327	/*
328	 * If there is an event in the counter we are going to use then make
329	 * sure it is disabled.
330	 */
331	event->hw.idx = idx;
332	armpmu->disable(hwc, idx);
333	cpuc->events[idx] = event;
334	set_bit(idx, cpuc->active_mask);
335
336	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
337	if (flags & PERF_EF_START)
338		armpmu_start(event, PERF_EF_RELOAD);
339
340	/* Propagate our changes to the userspace mapping. */
341	perf_event_update_userpage(event);
342
343out:
344	perf_pmu_enable(event->pmu);
345	return err;
346}
347
348static struct pmu pmu;
349
350static int
351validate_event(struct cpu_hw_events *cpuc,
352	       struct perf_event *event)
353{
354	struct hw_perf_event fake_event = event->hw;
 
 
 
 
 
 
355
356	if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
357		return 1;
358
359	return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
360}
361
362static int
363validate_group(struct perf_event *event)
364{
365	struct perf_event *sibling, *leader = event->group_leader;
366	struct cpu_hw_events fake_pmu;
 
367
368	memset(&fake_pmu, 0, sizeof(fake_pmu));
 
 
 
 
 
369
370	if (!validate_event(&fake_pmu, leader))
371		return -ENOSPC;
372
373	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
374		if (!validate_event(&fake_pmu, sibling))
375			return -ENOSPC;
376	}
377
378	if (!validate_event(&fake_pmu, event))
379		return -ENOSPC;
380
381	return 0;
382}
383
384static irqreturn_t armpmu_platform_irq(int irq, void *dev)
385{
386	struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
387
388	return plat->handle_irq(irq, dev, armpmu->handle_irq);
389}
390
391static int
392armpmu_reserve_hardware(void)
393{
 
 
394	struct arm_pmu_platdata *plat;
395	irq_handler_t handle_irq;
396	int i, err = -ENODEV, irq;
397
398	pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
399	if (IS_ERR(pmu_device)) {
400		pr_warning("unable to reserve pmu\n");
401		return PTR_ERR(pmu_device);
402	}
403
404	init_pmu(ARM_PMU_DEVICE_CPU);
405
406	plat = dev_get_platdata(&pmu_device->dev);
407	if (plat && plat->handle_irq)
408		handle_irq = armpmu_platform_irq;
409	else
410		handle_irq = armpmu->handle_irq;
 
411
412	if (pmu_device->num_resources < 1) {
413		pr_err("no irqs for PMUs defined\n");
414		return -ENODEV;
415	}
416
417	for (i = 0; i < pmu_device->num_resources; ++i) {
418		irq = platform_get_irq(pmu_device, i);
419		if (irq < 0)
420			continue;
421
422		err = request_irq(irq, handle_irq,
423				  IRQF_DISABLED | IRQF_NOBALANCING,
424				  "armpmu", NULL);
425		if (err) {
426			pr_warning("unable to request IRQ%d for ARM perf "
427				"counters\n", irq);
428			break;
429		}
430	}
431
432	if (err) {
433		for (i = i - 1; i >= 0; --i) {
434			irq = platform_get_irq(pmu_device, i);
435			if (irq >= 0)
436				free_irq(irq, NULL);
437		}
438		release_pmu(ARM_PMU_DEVICE_CPU);
439		pmu_device = NULL;
440	}
441
442	return err;
443}
444
445static void
446armpmu_release_hardware(void)
447{
448	int i, irq;
 
 
 
 
 
 
 
 
 
 
 
449
450	for (i = pmu_device->num_resources - 1; i >= 0; --i) {
451		irq = platform_get_irq(pmu_device, i);
452		if (irq >= 0)
453			free_irq(irq, NULL);
 
454	}
455	armpmu->stop();
456
457	release_pmu(ARM_PMU_DEVICE_CPU);
458	pmu_device = NULL;
459}
460
461static atomic_t active_events = ATOMIC_INIT(0);
462static DEFINE_MUTEX(pmu_reserve_mutex);
463
464static void
465hw_perf_event_destroy(struct perf_event *event)
466{
467	if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
468		armpmu_release_hardware();
469		mutex_unlock(&pmu_reserve_mutex);
 
 
 
 
470	}
471}
472
473static int
 
 
 
 
 
 
 
474__hw_perf_event_init(struct perf_event *event)
475{
 
476	struct hw_perf_event *hwc = &event->hw;
477	int mapping, err;
478
479	/* Decode the generic type into an ARM event identifier. */
480	if (PERF_TYPE_HARDWARE == event->attr.type) {
481		mapping = armpmu_map_event(event->attr.config);
482	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
483		mapping = armpmu_map_cache_event(event->attr.config);
484	} else if (PERF_TYPE_RAW == event->attr.type) {
485		mapping = armpmu_map_raw_event(event->attr.config);
486	} else {
487		pr_debug("event type %x not supported\n", event->attr.type);
488		return -EOPNOTSUPP;
489	}
490
491	if (mapping < 0) {
492		pr_debug("event %x:%llx not supported\n", event->attr.type,
493			 event->attr.config);
494		return mapping;
495	}
496
497	/*
498	 * Check whether we need to exclude the counter from certain modes.
499	 * The ARM performance counters are on all of the time so if someone
500	 * has asked us for some excludes then we have to fail.
501	 */
502	if (event->attr.exclude_kernel || event->attr.exclude_user ||
503	    event->attr.exclude_hv || event->attr.exclude_idle) {
504		pr_debug("ARM performance counters do not support "
505			 "mode exclusion\n");
506		return -EPERM;
507	}
508
509	/*
510	 * We don't assign an index until we actually place the event onto
511	 * hardware. Use -1 to signify that we haven't decided where to put it
512	 * yet. For SMP systems, each core has it's own PMU so we can't do any
513	 * clever allocation or constraints checking at this point.
514	 */
515	hwc->idx = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
517	/*
518	 * Store the event encoding into the config_base field. config and
519	 * event_base are unused as the only 2 things we need to know are
520	 * the event mapping and the counter to use. The counter to use is
521	 * also the indx and the config_base is the event type.
522	 */
523	hwc->config_base	    = (unsigned long)mapping;
524	hwc->config		    = 0;
525	hwc->event_base		    = 0;
526
527	if (!hwc->sample_period) {
528		hwc->sample_period  = armpmu->max_period;
 
 
 
 
 
 
529		hwc->last_period    = hwc->sample_period;
530		local64_set(&hwc->period_left, hwc->sample_period);
531	}
532
533	err = 0;
534	if (event->group_leader != event) {
535		err = validate_group(event);
536		if (err)
537			return -EINVAL;
538	}
539
540	return err;
541}
542
543static int armpmu_event_init(struct perf_event *event)
544{
 
545	int err = 0;
 
546
547	switch (event->attr.type) {
548	case PERF_TYPE_RAW:
549	case PERF_TYPE_HARDWARE:
550	case PERF_TYPE_HW_CACHE:
551		break;
552
553	default:
554		return -ENOENT;
555	}
556
557	if (!armpmu)
558		return -ENODEV;
559
560	event->destroy = hw_perf_event_destroy;
561
562	if (!atomic_inc_not_zero(&active_events)) {
563		mutex_lock(&pmu_reserve_mutex);
564		if (atomic_read(&active_events) == 0) {
565			err = armpmu_reserve_hardware();
566		}
567
568		if (!err)
569			atomic_inc(&active_events);
570		mutex_unlock(&pmu_reserve_mutex);
571	}
572
573	if (err)
574		return err;
575
576	err = __hw_perf_event_init(event);
577	if (err)
578		hw_perf_event_destroy(event);
579
580	return err;
581}
582
583static void armpmu_enable(struct pmu *pmu)
584{
585	/* Enable all of the perf events on hardware. */
586	int idx, enabled = 0;
587	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
588
589	if (!armpmu)
590		return;
591
592	for (idx = 0; idx <= armpmu->num_events; ++idx) {
593		struct perf_event *event = cpuc->events[idx];
594
595		if (!event)
596			continue;
597
598		armpmu->enable(&event->hw, idx);
599		enabled = 1;
600	}
601
602	if (enabled)
603		armpmu->start();
604}
605
606static void armpmu_disable(struct pmu *pmu)
607{
608	if (armpmu)
609		armpmu->stop();
610}
611
612static struct pmu pmu = {
613	.pmu_enable	= armpmu_enable,
614	.pmu_disable	= armpmu_disable,
615	.event_init	= armpmu_event_init,
616	.add		= armpmu_add,
617	.del		= armpmu_del,
618	.start		= armpmu_start,
619	.stop		= armpmu_stop,
620	.read		= armpmu_read,
621};
622
623/* Include the PMU-specific implementations. */
624#include "perf_event_xscale.c"
625#include "perf_event_v6.c"
626#include "perf_event_v7.c"
627
628/*
629 * Ensure the PMU has sane values out of reset.
630 * This requires SMP to be available, so exists as a separate initcall.
631 */
632static int __init
633armpmu_reset(void)
634{
635	if (armpmu && armpmu->reset)
636		return on_each_cpu(armpmu->reset, NULL, 1);
637	return 0;
638}
639arch_initcall(armpmu_reset);
640
641static int __init
642init_hw_perf_events(void)
643{
644	unsigned long cpuid = read_cpuid_id();
645	unsigned long implementor = (cpuid & 0xFF000000) >> 24;
646	unsigned long part_number = (cpuid & 0xFFF0);
647
648	/* ARM Ltd CPUs. */
649	if (0x41 == implementor) {
650		switch (part_number) {
651		case 0xB360:	/* ARM1136 */
652		case 0xB560:	/* ARM1156 */
653		case 0xB760:	/* ARM1176 */
654			armpmu = armv6pmu_init();
655			break;
656		case 0xB020:	/* ARM11mpcore */
657			armpmu = armv6mpcore_pmu_init();
658			break;
659		case 0xC080:	/* Cortex-A8 */
660			armpmu = armv7_a8_pmu_init();
661			break;
662		case 0xC090:	/* Cortex-A9 */
663			armpmu = armv7_a9_pmu_init();
664			break;
665		case 0xC050:	/* Cortex-A5 */
666			armpmu = armv7_a5_pmu_init();
667			break;
668		case 0xC0F0:	/* Cortex-A15 */
669			armpmu = armv7_a15_pmu_init();
670			break;
671		}
672	/* Intel CPUs [xscale]. */
673	} else if (0x69 == implementor) {
674		part_number = (cpuid >> 13) & 0x7;
675		switch (part_number) {
676		case 1:
677			armpmu = xscale1pmu_init();
678			break;
679		case 2:
680			armpmu = xscale2pmu_init();
681			break;
682		}
683	}
684
685	if (armpmu) {
686		pr_info("enabled with %s PMU driver, %d counters available\n",
687			armpmu->name, armpmu->num_events);
688	} else {
689		pr_info("no hardware support available\n");
690	}
691
692	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
693
694	return 0;
695}
696early_initcall(init_hw_perf_events);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697
698/*
699 * Callchain handling code.
700 */
701
702/*
703 * The registers we're interested in are at the end of the variable
704 * length saved register structure. The fp points at the end of this
705 * structure so the address of this struct is:
706 * (struct frame_tail *)(xxx->fp)-1
707 *
708 * This code has been adapted from the ARM OProfile support.
709 */
710struct frame_tail {
711	struct frame_tail __user *fp;
712	unsigned long sp;
713	unsigned long lr;
714} __attribute__((packed));
715
716/*
717 * Get the return address for a single stackframe and return a pointer to the
718 * next frame tail.
719 */
720static struct frame_tail __user *
721user_backtrace(struct frame_tail __user *tail,
722	       struct perf_callchain_entry *entry)
723{
724	struct frame_tail buftail;
725
726	/* Also check accessibility of one struct frame_tail beyond */
727	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
728		return NULL;
729	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
730		return NULL;
731
732	perf_callchain_store(entry, buftail.lr);
733
734	/*
735	 * Frame pointers should strictly progress back up the stack
736	 * (towards higher addresses).
737	 */
738	if (tail + 1 >= buftail.fp)
739		return NULL;
740
741	return buftail.fp - 1;
742}
743
744void
745perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
746{
747	struct frame_tail __user *tail;
748
 
 
 
 
749
 
750	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
751
752	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
753	       tail && !((unsigned long)tail & 0x3))
754		tail = user_backtrace(tail, entry);
755}
756
757/*
758 * Gets called by walk_stackframe() for every stackframe. This will be called
759 * whist unwinding the stackframe and is like a subroutine return so we use
760 * the PC.
761 */
762static int
763callchain_trace(struct stackframe *fr,
764		void *data)
765{
766	struct perf_callchain_entry *entry = data;
767	perf_callchain_store(entry, fr->pc);
768	return 0;
769}
770
771void
772perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
773{
774	struct stackframe fr;
775
 
 
 
 
 
776	fr.fp = regs->ARM_fp;
777	fr.sp = regs->ARM_sp;
778	fr.lr = regs->ARM_lr;
779	fr.pc = regs->ARM_pc;
780	walk_stackframe(&fr, callchain_trace, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781}
v3.15
  1#undef DEBUG
  2
  3/*
  4 * ARM performance counter support.
  5 *
  6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
  8 *
  9 * This code is based on the sparc64 perf event code, which is in turn based
 10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
 11 * code.
 12 */
 13#define pr_fmt(fmt) "hw perfevents: " fmt
 14
 
 15#include <linux/kernel.h>
 
 
 16#include <linux/platform_device.h>
 17#include <linux/pm_runtime.h>
 18#include <linux/uaccess.h>
 19#include <linux/irq.h>
 20#include <linux/irqdesc.h>
 21
 
 
 22#include <asm/irq_regs.h>
 23#include <asm/pmu.h>
 24#include <asm/stacktrace.h>
 25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26static int
 27armpmu_map_cache_event(const unsigned (*cache_map)
 28				      [PERF_COUNT_HW_CACHE_MAX]
 29				      [PERF_COUNT_HW_CACHE_OP_MAX]
 30				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
 31		       u64 config)
 32{
 33	unsigned int cache_type, cache_op, cache_result, ret;
 34
 35	cache_type = (config >>  0) & 0xff;
 36	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 37		return -EINVAL;
 38
 39	cache_op = (config >>  8) & 0xff;
 40	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 41		return -EINVAL;
 42
 43	cache_result = (config >> 16) & 0xff;
 44	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 45		return -EINVAL;
 46
 47	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
 48
 49	if (ret == CACHE_OP_UNSUPPORTED)
 50		return -ENOENT;
 51
 52	return ret;
 53}
 54
 55static int
 56armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
 57{
 58	int mapping;
 59
 60	if (config >= PERF_COUNT_HW_MAX)
 61		return -EINVAL;
 62
 63	mapping = (*event_map)[config];
 64	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
 65}
 66
 67static int
 68armpmu_map_raw_event(u32 raw_event_mask, u64 config)
 69{
 70	return (int)(config & raw_event_mask);
 71}
 72
 73int
 74armpmu_map_event(struct perf_event *event,
 75		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
 76		 const unsigned (*cache_map)
 77				[PERF_COUNT_HW_CACHE_MAX]
 78				[PERF_COUNT_HW_CACHE_OP_MAX]
 79				[PERF_COUNT_HW_CACHE_RESULT_MAX],
 80		 u32 raw_event_mask)
 81{
 82	u64 config = event->attr.config;
 83
 84	switch (event->attr.type) {
 85	case PERF_TYPE_HARDWARE:
 86		return armpmu_map_hw_event(event_map, config);
 87	case PERF_TYPE_HW_CACHE:
 88		return armpmu_map_cache_event(cache_map, config);
 89	case PERF_TYPE_RAW:
 90		return armpmu_map_raw_event(raw_event_mask, config);
 91	}
 92
 93	return -ENOENT;
 94}
 95
 96int armpmu_event_set_period(struct perf_event *event)
 97{
 98	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 99	struct hw_perf_event *hwc = &event->hw;
100	s64 left = local64_read(&hwc->period_left);
101	s64 period = hwc->sample_period;
102	int ret = 0;
103
104	if (unlikely(left <= -period)) {
105		left = period;
106		local64_set(&hwc->period_left, left);
107		hwc->last_period = period;
108		ret = 1;
109	}
110
111	if (unlikely(left <= 0)) {
112		left += period;
113		local64_set(&hwc->period_left, left);
114		hwc->last_period = period;
115		ret = 1;
116	}
117
118	if (left > (s64)armpmu->max_period)
119		left = armpmu->max_period;
120
121	local64_set(&hwc->prev_count, (u64)-left);
122
123	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
124
125	perf_event_update_userpage(event);
126
127	return ret;
128}
129
130u64 armpmu_event_update(struct perf_event *event)
 
 
 
131{
132	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
133	struct hw_perf_event *hwc = &event->hw;
134	u64 delta, prev_raw_count, new_raw_count;
135
136again:
137	prev_raw_count = local64_read(&hwc->prev_count);
138	new_raw_count = armpmu->read_counter(event);
139
140	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
141			     new_raw_count) != prev_raw_count)
142		goto again;
143
144	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
 
 
 
 
 
 
145
146	local64_add(delta, &event->count);
147	local64_sub(delta, &hwc->period_left);
148
149	return new_raw_count;
150}
151
152static void
153armpmu_read(struct perf_event *event)
154{
155	armpmu_event_update(event);
 
 
 
 
 
 
156}
157
158static void
159armpmu_stop(struct perf_event *event, int flags)
160{
161	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
162	struct hw_perf_event *hwc = &event->hw;
163
 
 
 
164	/*
165	 * ARM pmu always has to update the counter, so ignore
166	 * PERF_EF_UPDATE, see comments in armpmu_start().
167	 */
168	if (!(hwc->state & PERF_HES_STOPPED)) {
169		armpmu->disable(event);
170		armpmu_event_update(event);
 
171		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
172	}
173}
174
175static void armpmu_start(struct perf_event *event, int flags)
 
176{
177	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
178	struct hw_perf_event *hwc = &event->hw;
179
 
 
 
180	/*
181	 * ARM pmu always has to reprogram the period, so ignore
182	 * PERF_EF_RELOAD, see the comment below.
183	 */
184	if (flags & PERF_EF_RELOAD)
185		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
186
187	hwc->state = 0;
188	/*
189	 * Set the period again. Some counters can't be stopped, so when we
190	 * were stopped we simply disabled the IRQ source and the counter
191	 * may have been left counting. If we don't do this step then we may
192	 * get an interrupt too soon or *way* too late if the overflow has
193	 * happened since disabling.
194	 */
195	armpmu_event_set_period(event);
196	armpmu->enable(event);
197}
198
199static void
200armpmu_del(struct perf_event *event, int flags)
201{
202	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
204	struct hw_perf_event *hwc = &event->hw;
205	int idx = hwc->idx;
206
 
 
 
207	armpmu_stop(event, PERF_EF_UPDATE);
208	hw_events->events[idx] = NULL;
209	clear_bit(idx, hw_events->used_mask);
210	if (armpmu->clear_event_idx)
211		armpmu->clear_event_idx(hw_events, event);
212
213	perf_event_update_userpage(event);
214}
215
216static int
217armpmu_add(struct perf_event *event, int flags)
218{
219	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
220	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
221	struct hw_perf_event *hwc = &event->hw;
222	int idx;
223	int err = 0;
224
225	perf_pmu_disable(event->pmu);
226
227	/* If we don't have a space for the counter then finish early. */
228	idx = armpmu->get_event_idx(hw_events, event);
229	if (idx < 0) {
230		err = idx;
231		goto out;
232	}
233
234	/*
235	 * If there is an event in the counter we are going to use then make
236	 * sure it is disabled.
237	 */
238	event->hw.idx = idx;
239	armpmu->disable(event);
240	hw_events->events[idx] = event;
 
241
242	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
243	if (flags & PERF_EF_START)
244		armpmu_start(event, PERF_EF_RELOAD);
245
246	/* Propagate our changes to the userspace mapping. */
247	perf_event_update_userpage(event);
248
249out:
250	perf_pmu_enable(event->pmu);
251	return err;
252}
253
 
 
254static int
255validate_event(struct pmu_hw_events *hw_events,
256	       struct perf_event *event)
257{
258	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
259
260	if (is_software_event(event))
261		return 1;
262
263	if (event->state < PERF_EVENT_STATE_OFF)
264		return 1;
265
266	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
267		return 1;
268
269	return armpmu->get_event_idx(hw_events, event) >= 0;
270}
271
272static int
273validate_group(struct perf_event *event)
274{
275	struct perf_event *sibling, *leader = event->group_leader;
276	struct pmu_hw_events fake_pmu;
277	DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
278
279	/*
280	 * Initialise the fake PMU. We only need to populate the
281	 * used_mask for the purposes of validation.
282	 */
283	memset(fake_used_mask, 0, sizeof(fake_used_mask));
284	fake_pmu.used_mask = fake_used_mask;
285
286	if (!validate_event(&fake_pmu, leader))
287		return -EINVAL;
288
289	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
290		if (!validate_event(&fake_pmu, sibling))
291			return -EINVAL;
292	}
293
294	if (!validate_event(&fake_pmu, event))
295		return -EINVAL;
296
297	return 0;
298}
299
300static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
 
 
 
 
 
 
 
 
301{
302	struct arm_pmu *armpmu;
303	struct platform_device *plat_device;
304	struct arm_pmu_platdata *plat;
305	int ret;
306	u64 start_clock, finish_clock;
307
308	if (irq_is_percpu(irq))
309		dev = *(void **)dev;
310	armpmu = dev;
311	plat_device = armpmu->plat_device;
312	plat = dev_get_platdata(&plat_device->dev);
313
314	start_clock = sched_clock();
 
 
315	if (plat && plat->handle_irq)
316		ret = plat->handle_irq(irq, dev, armpmu->handle_irq);
317	else
318		ret = armpmu->handle_irq(irq, dev);
319	finish_clock = sched_clock();
320
321	perf_sample_event_took(finish_clock - start_clock);
322	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323}
324
325static void
326armpmu_release_hardware(struct arm_pmu *armpmu)
327{
328	armpmu->free_irq(armpmu);
329	pm_runtime_put_sync(&armpmu->plat_device->dev);
330}
331
332static int
333armpmu_reserve_hardware(struct arm_pmu *armpmu)
334{
335	int err;
336	struct platform_device *pmu_device = armpmu->plat_device;
337
338	if (!pmu_device)
339		return -ENODEV;
340
341	pm_runtime_get_sync(&pmu_device->dev);
342	err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
343	if (err) {
344		armpmu_release_hardware(armpmu);
345		return err;
346	}
 
347
348	return 0;
 
349}
350
 
 
 
351static void
352hw_perf_event_destroy(struct perf_event *event)
353{
354	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
355	atomic_t *active_events	 = &armpmu->active_events;
356	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
357
358	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
359		armpmu_release_hardware(armpmu);
360		mutex_unlock(pmu_reserve_mutex);
361	}
362}
363
364static int
365event_requires_mode_exclusion(struct perf_event_attr *attr)
366{
367	return attr->exclude_idle || attr->exclude_user ||
368	       attr->exclude_kernel || attr->exclude_hv;
369}
370
371static int
372__hw_perf_event_init(struct perf_event *event)
373{
374	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
375	struct hw_perf_event *hwc = &event->hw;
376	int mapping;
377
378	mapping = armpmu->map_event(event);
 
 
 
 
 
 
 
 
 
 
379
380	if (mapping < 0) {
381		pr_debug("event %x:%llx not supported\n", event->attr.type,
382			 event->attr.config);
383		return mapping;
384	}
385
386	/*
 
 
 
 
 
 
 
 
 
 
 
 
387	 * We don't assign an index until we actually place the event onto
388	 * hardware. Use -1 to signify that we haven't decided where to put it
389	 * yet. For SMP systems, each core has it's own PMU so we can't do any
390	 * clever allocation or constraints checking at this point.
391	 */
392	hwc->idx		= -1;
393	hwc->config_base	= 0;
394	hwc->config		= 0;
395	hwc->event_base		= 0;
396
397	/*
398	 * Check whether we need to exclude the counter from certain modes.
399	 */
400	if ((!armpmu->set_event_filter ||
401	     armpmu->set_event_filter(hwc, &event->attr)) &&
402	     event_requires_mode_exclusion(&event->attr)) {
403		pr_debug("ARM performance counters do not support "
404			 "mode exclusion\n");
405		return -EOPNOTSUPP;
406	}
407
408	/*
409	 * Store the event encoding into the config_base field.
 
 
 
410	 */
411	hwc->config_base	    |= (unsigned long)mapping;
 
 
412
413	if (!hwc->sample_period) {
414		/*
415		 * For non-sampling runs, limit the sample_period to half
416		 * of the counter width. That way, the new counter value
417		 * is far less likely to overtake the previous one unless
418		 * you have some serious IRQ latency issues.
419		 */
420		hwc->sample_period  = armpmu->max_period >> 1;
421		hwc->last_period    = hwc->sample_period;
422		local64_set(&hwc->period_left, hwc->sample_period);
423	}
424
 
425	if (event->group_leader != event) {
426		if (validate_group(event) != 0)
 
427			return -EINVAL;
428	}
429
430	return 0;
431}
432
433static int armpmu_event_init(struct perf_event *event)
434{
435	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
436	int err = 0;
437	atomic_t *active_events = &armpmu->active_events;
438
439	/* does not support taken branch sampling */
440	if (has_branch_stack(event))
441		return -EOPNOTSUPP;
 
 
442
443	if (armpmu->map_event(event) == -ENOENT)
444		return -ENOENT;
 
 
 
 
445
446	event->destroy = hw_perf_event_destroy;
447
448	if (!atomic_inc_not_zero(active_events)) {
449		mutex_lock(&armpmu->reserve_mutex);
450		if (atomic_read(active_events) == 0)
451			err = armpmu_reserve_hardware(armpmu);
 
452
453		if (!err)
454			atomic_inc(active_events);
455		mutex_unlock(&armpmu->reserve_mutex);
456	}
457
458	if (err)
459		return err;
460
461	err = __hw_perf_event_init(event);
462	if (err)
463		hw_perf_event_destroy(event);
464
465	return err;
466}
467
468static void armpmu_enable(struct pmu *pmu)
469{
470	struct arm_pmu *armpmu = to_arm_pmu(pmu);
471	struct pmu_hw_events *hw_events = armpmu->get_hw_events();
472	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 
 
 
 
 
 
 
 
 
 
 
 
 
473
474	if (enabled)
475		armpmu->start(armpmu);
476}
477
478static void armpmu_disable(struct pmu *pmu)
479{
480	struct arm_pmu *armpmu = to_arm_pmu(pmu);
481	armpmu->stop(armpmu);
482}
483
484#ifdef CONFIG_PM_RUNTIME
485static int armpmu_runtime_resume(struct device *dev)
486{
487	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
 
 
 
 
 
 
488
489	if (plat && plat->runtime_resume)
490		return plat->runtime_resume(dev);
 
 
491
 
 
 
 
 
 
 
 
 
492	return 0;
493}
 
494
495static int armpmu_runtime_suspend(struct device *dev)
 
496{
497	struct arm_pmu_platdata *plat = dev_get_platdata(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498
499	if (plat && plat->runtime_suspend)
500		return plat->runtime_suspend(dev);
 
 
 
 
 
 
501
502	return 0;
503}
504#endif
505
506const struct dev_pm_ops armpmu_dev_pm_ops = {
507	SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
508};
509
510static void armpmu_init(struct arm_pmu *armpmu)
511{
512	atomic_set(&armpmu->active_events, 0);
513	mutex_init(&armpmu->reserve_mutex);
514
515	armpmu->pmu = (struct pmu) {
516		.pmu_enable	= armpmu_enable,
517		.pmu_disable	= armpmu_disable,
518		.event_init	= armpmu_event_init,
519		.add		= armpmu_add,
520		.del		= armpmu_del,
521		.start		= armpmu_start,
522		.stop		= armpmu_stop,
523		.read		= armpmu_read,
524	};
525}
526
527int armpmu_register(struct arm_pmu *armpmu, int type)
528{
529	armpmu_init(armpmu);
530	pm_runtime_enable(&armpmu->plat_device->dev);
531	pr_info("enabled with %s PMU driver, %d counters available\n",
532			armpmu->name, armpmu->num_events);
533	return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
534}
535
536/*
537 * Callchain handling code.
538 */
539
540/*
541 * The registers we're interested in are at the end of the variable
542 * length saved register structure. The fp points at the end of this
543 * structure so the address of this struct is:
544 * (struct frame_tail *)(xxx->fp)-1
545 *
546 * This code has been adapted from the ARM OProfile support.
547 */
548struct frame_tail {
549	struct frame_tail __user *fp;
550	unsigned long sp;
551	unsigned long lr;
552} __attribute__((packed));
553
554/*
555 * Get the return address for a single stackframe and return a pointer to the
556 * next frame tail.
557 */
558static struct frame_tail __user *
559user_backtrace(struct frame_tail __user *tail,
560	       struct perf_callchain_entry *entry)
561{
562	struct frame_tail buftail;
563
564	/* Also check accessibility of one struct frame_tail beyond */
565	if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
566		return NULL;
567	if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
568		return NULL;
569
570	perf_callchain_store(entry, buftail.lr);
571
572	/*
573	 * Frame pointers should strictly progress back up the stack
574	 * (towards higher addresses).
575	 */
576	if (tail + 1 >= buftail.fp)
577		return NULL;
578
579	return buftail.fp - 1;
580}
581
582void
583perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
584{
585	struct frame_tail __user *tail;
586
587	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
588		/* We don't support guest os callchain now */
589		return;
590	}
591
592	perf_callchain_store(entry, regs->ARM_pc);
593	tail = (struct frame_tail __user *)regs->ARM_fp - 1;
594
595	while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
596	       tail && !((unsigned long)tail & 0x3))
597		tail = user_backtrace(tail, entry);
598}
599
600/*
601 * Gets called by walk_stackframe() for every stackframe. This will be called
602 * whist unwinding the stackframe and is like a subroutine return so we use
603 * the PC.
604 */
605static int
606callchain_trace(struct stackframe *fr,
607		void *data)
608{
609	struct perf_callchain_entry *entry = data;
610	perf_callchain_store(entry, fr->pc);
611	return 0;
612}
613
614void
615perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
616{
617	struct stackframe fr;
618
619	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
620		/* We don't support guest os callchain now */
621		return;
622	}
623
624	fr.fp = regs->ARM_fp;
625	fr.sp = regs->ARM_sp;
626	fr.lr = regs->ARM_lr;
627	fr.pc = regs->ARM_pc;
628	walk_stackframe(&fr, callchain_trace, entry);
629}
630
631unsigned long perf_instruction_pointer(struct pt_regs *regs)
632{
633	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
634		return perf_guest_cbs->get_guest_ip();
635
636	return instruction_pointer(regs);
637}
638
639unsigned long perf_misc_flags(struct pt_regs *regs)
640{
641	int misc = 0;
642
643	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
644		if (perf_guest_cbs->is_user_mode())
645			misc |= PERF_RECORD_MISC_GUEST_USER;
646		else
647			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
648	} else {
649		if (user_mode(regs))
650			misc |= PERF_RECORD_MISC_USER;
651		else
652			misc |= PERF_RECORD_MISC_KERNEL;
653	}
654
655	return misc;
656}